Geração de peptídeos bioativos usando flavourzyme: potenciais funcionais e aplicações emergentes

Geração de peptídeos bioativos usando flavourzyme: potenciais funcionais e aplicações emergentes

Autores

DOI:

https://doi.org/10.58951/fstoday.2025.013

Palavras-chave:

Hidrólise. Proteases. Peptídeos. Bioatividade. Tecnologia de alimentos.

Resumo

Peptídeos bioativos derivados de hidrólise enzimática têm atraído considerável atenção por seu potencial de uso em alimentos funcionais para prevenir doenças crônicas. Esta revisão teve como objetivo analisar o potencial funcional de peptídeos gerados por hidrólise mediada por Flavourzyme, a fim de apresentar uma visão geral das evidências científicas sobre suas características enzimáticas, especificidade do substrato, atividades biológicas relatadas e aplicações emergentes em sistemas alimentares. Uma abordagem de revisão narrativa foi adotada, com foco em estudos revisados por pares publicados entre 2015 e 2025. Flavourzyme, um complexo de protease de Aspergillus oryzae, apresenta atividades de endo- e exopeptidase que facilitam a degradação de proteínas e reduzem o amargor dos peptídeos. As bioatividades relatadas de seus hidrolisados incluem efeitos antioxidantes, inibidores da enzima conversora de angiotensina (ECA), inibidores da dipeptidil peptidase IV (DPP-IV) e anti-inflamatórios. Essas atividades foram observadas em diversas fontes de proteína, como laticínios, leguminosas, cereais e subprodutos de frutos do mar. A enzima também tem sido usada em estratégias de hidrólise sequencial com outras proteases, o que tem melhorado a bioatividade e os perfis sensoriais. Além disso, foram identificadas aplicações da Flavourzyme em processos tecnológicos que envolvem melhoria de textura, emulsificação, aumento da digestibilidade e sistemas de encapsulamento. Os resultados destacaram a versatilidade e a utilidade da enzima no desenvolvimento de ingredientes funcionais com efeitos benéficos à saúde. Este trabalho contribuiu para a identificação do escopo e da relevância da Flavourzyme no avanço de estratégias biotecnológicas voltadas ao desenvolvimento de alimentos funcionais.

Referências

Ahmadifard, N., Murueta, J. H. C., Abedian-Kenari, A., Motamedzadegan, A., & Jamali, H. (2016). Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE. Journal of Food Science and Technology, 53(2), 1279–1284. https://doi.org/10.1007/s13197-015-2087-6 DOI: https://doi.org/10.1007/s13197-015-2087-6

Ahtesh, F. B., Stojanovska, L., Mathai, M. L., Apostolopoulos, V., & Mishra, V. K. (2016). Proteolytic and angiotensin‐converting enzyme‐inhibitory activities of selected probiotic bacteria. International Journal of Food Science & Technology, 51(4), 865–874. https://doi.org/10.1111/ijfs.13054 DOI: https://doi.org/10.1111/ijfs.13054

Ahtesh, F. B., Stojanovska, L., Mishra, V., Donkor, O., Feehan, J., Bosevski, M., Mathai, M., & Apostolopoulos, V. (2021). Identification and effects of skim milk-derived bioactive antihypertensive peptides. Biologics, 2(1), 1–14. https://doi.org/10.3390/biologics2010001 DOI: https://doi.org/10.3390/biologics2010001

Ahtesh, F., Stojanovska, L., Shah, N., & Mishra, V. K. (2016). Effect of Flavourzyme ® on angiotensin‐converting enzyme inhibitory peptides formed in skim milk and whey protein concentrate during fermentation by Lactobacillus helveticus. Journal of Food Science, 81(1). https://doi.org/10.1111/1750-3841.13177 DOI: https://doi.org/10.1111/1750-3841.13177

Alahmad, K., Noman, A., Xia, W., Jiang, Q., & Xu, Y. (2023). Influence of the enzymatic hydrolysis using flavourzyme enzyme on functional, secondary structure, and antioxidant characteristics of protein hydrolysates produced from bighead carp (Hypophthalmichthys nobilis). Molecules, 28(2), 519. https://doi.org/10.3390/molecules28020519 DOI: https://doi.org/10.3390/molecules28020519

Asen, N. D., & Aluko, R. E. (2022). Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. Journal of Food Biochemistry, 46(11). https://doi.org/10.1111/jfbc.14289 DOI: https://doi.org/10.1111/jfbc.14289

Bjørlie, M., Hartmann, J. C., Rasmussen, L. H., Yesiltas, B., Sørensen, A.-D. M., Gregersen Echers, S., & Jacobsen, C. (2024). Screening for metal-chelating activity in potato protein hydrolysates using surface plasmon resonance and peptidomics. Antioxidants, 13(3), 346. https://doi.org/10.3390/antiox13030346 DOI: https://doi.org/10.3390/antiox13030346

Cheng, Y.-H., Liu, B.-Q., Cui, B., Wen, L., Xu, Z., Chen, M.-L., & Wu, H. (2023). Alanine substitution to determine the effect of LR5 and YR6 rice peptide structure on antioxidant and anti-inflammatory activity. Nutrients, 15(10), 2373. https://doi.org/10.3390/nu15102373 DOI: https://doi.org/10.3390/nu15102373

Chiang, J. H., Loveday, S. M., Hardacre, A. K., & Parker, M. E. (2019). Effects of enzymatic hydrolysis treatments on the physicochemical properties of beef bone extract using endo‐ and exoproteases. International Journal of Food Science & Technology, 54(1), 111–120. https://doi.org/10.1111/ijfs.13911 DOI: https://doi.org/10.1111/ijfs.13911

Cruz-Chamorro, I., Santos-Sánchez, G., Bollati, C., Bartolomei, M., Li, J., Arnoldi, A., & Lammi, C. (2022). Hempseed (Cannabis sativa) peptides WVSPLAGRT and IGFLIIWV exert anti-inflammatory activity in the LPS-stimulated human hepatic cell line. Journal of Agricultural and Food Chemistry, 70(2), 577–583. https://doi.org/10.1021/acs.jafc.1c07520 DOI: https://doi.org/10.1021/acs.jafc.1c07520

Eberhardt, A., López, E. C., Marino, F., Mammarella, E. J., Manzo, R. M., & Sihufe, G. A. (2021). Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. International Journal of Dairy Technology, 74(3), 489–504. https://doi.org/10.1111/1471-0307.12795 DOI: https://doi.org/10.1111/1471-0307.12795

Foong, L.-C., Imam, M. U., & Ismail, M. (2015). Iron-binding capacity of defatted rice bran hydrolysate and bioavailability of iron in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 63(41), 9029–9036. https://doi.org/10.1021/acs.jafc.5b03420 DOI: https://doi.org/10.1021/acs.jafc.5b03420

Gerónimo‐Alonso, M., Ortíz‐Vázquez, E., Rodríguez‐Canto, W., Chel‐Guerrero, L., & Betancur‐Ancona, D. (2025). Antithrombotic and anticariogenic activity of peptide fractions from cowpea (Vigna unguiculata) protein hydrolysates. Journal of the Science of Food and Agriculture, 105(1), 209–217. https://doi.org/10.1002/jsfa.13819 DOI: https://doi.org/10.1002/jsfa.13819

Ghulam, A., Arif, M., Unar, A., A. Thafar, M., Albaradei, S., & Worachartcheewan, A. (2025). StackAHTPs: An explainable antihypertensive peptides identifier based on heterogeneous features and stacked learning approach. IET Systems Biology, 19(1). https://doi.org/10.1049/syb2.70002 DOI: https://doi.org/10.1049/syb2.70002

Gui, M., Gao, L., Rao, L., Li, P., Zhang, Y., Han, J., & Li, J. (2022). Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. Journal of the Science of Food and Agriculture, 102(5), 1948–1957. https://doi.org/10.1002/jsfa.11532 DOI: https://doi.org/10.1002/jsfa.11532

Helal, A., Cattivelli, A., Conte, A., & Tagliazucchi, D. (2023). Effect of ripening and in vitro digestion on bioactive peptides profile in Ras cheese and their biological activities. Biology, 12(7), 948. https://doi.org/10.3390/biology12070948 DOI: https://doi.org/10.3390/biology12070948

Hernandez, L. M. R., & de Mejia, E. G. (2019). Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1913–1946. https://doi.org/10.1111/1541-4337.12504 DOI: https://doi.org/10.1111/1541-4337.12504

Hunsakul, K., Laokuldilok, T., Sakdatorn, V., Klangpetch, W., Brennan, C. S., & Utama-ang, N. (2022). Optimization of enzymatic hydrolysis by alcalase and flavourzyme to enhance the antioxidant properties of jasmine rice bran protein hydrolysate. Scientific Reports, 12(1), 12582. https://doi.org/10.1038/s41598-022-16821-z DOI: https://doi.org/10.1038/s41598-022-16821-z

Hwang, C., Chen, Y., Luo, C., & Chiang, W. (2016). Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. International Journal of Food Science & Technology, 51(3), 681–689. https://doi.org/10.1111/ijfs.13030 DOI: https://doi.org/10.1111/ijfs.13030

Inkanuwat, A., Sukaboon, R., Reamtong, O., Asawanonda, P., Pattaratanakun, A., Saisavoey, T., Sangtanoo, P., & Karnchanatat, A. (2019). Nitric oxide synthesis inhibition and anti-inflammatory effect of polypeptide isolated from chicken feather meal in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Technology and Biotechnology, 57(2), 200–212. https://doi.org/10.17113/ftb.57.02.19.5964 DOI: https://doi.org/10.17113/ftb.57.02.19.5964

Intiquilla, A., Jiménez‐Aliaga, K., Guzmán, F., Alvarez, C. A., Zavaleta, A. I., Izaguirre, V., & Hernández‐Ledesma, B. (2019). Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. Journal of the Science of Food and Agriculture, 99(5), 2420–2427. https://doi.org/10.1002/jsfa.9449 DOI: https://doi.org/10.1002/jsfa.9449

Ishikawa, Y., Hira, T., Inoue, D., Harada, Y., Hashimoto, H., Fujii, M., Kadowaki, M., & Hara, H. (2015). Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food & Function, 6(8), 2525–2534. https://doi.org/10.1039/C4FO01054J DOI: https://doi.org/10.1039/C4FO01054J

Ji, T., Xu, G., Wu, Y., Wang, Y., Xiao, C., Zhang, B., Xu, B., & Xu, F. (2024). Amelioration of type 2 diabetes mellitus using rapeseed (Brassica napus)-derived peptides through stimulating calcium-sensing receptor: effects on glucagon-like peptide-1 secretion and hepatic lipid metabolism. Journal of Agricultural and Food Chemistry, 72(43), 23804–23818. https://doi.org/10.1021/acs.jafc.4c03987 DOI: https://doi.org/10.1021/acs.jafc.4c03987

Jiang, Y., Li, S., Jiang, L., Mu, G., & Jiang, S. (2025). Immunomodulatory activity and molecular mechanisms of action of peptides derived from casein hydrolysate by alcalase and flavourzyme based on virtual screening. Journal of Dairy Science, 108(3), 2152–2168. https://doi.org/10.3168/jds.2024-25224 DOI: https://doi.org/10.3168/jds.2024-25224

Jogi, N., Mathew, A., & Mamatha, B. S. (2024). Modification of bioactive properties in food protein hydrolysates by alcalase and trypsin. Journal of Health and Allied Sciences NU, 14(S 01), S26–S34. https://doi.org/10.1055/s-0044-1782643 DOI: https://doi.org/10.1055/s-0044-1782643

Karamać, M., Kosińska-Cagnazzo, A., & Kulczyk, A. (2016). Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. International Journal of Molecular Sciences, 17(7), 1027. https://doi.org/10.3390/ijms17071027 DOI: https://doi.org/10.3390/ijms17071027

Karami, Z., Butkinaree, C., Somsong, P., & Duangmal, K. (2023). Assessment of the DPP‐IV inhibitory potential of mung bean and adzuki bean protein hydrolysates using enzymatic hydrolysis process: specificity of peptidases and novel peptides. International Journal of Food Science & Technology, 58(6), 2995–3005. https://doi.org/10.1111/ijfs.16422 DOI: https://doi.org/10.1111/ijfs.16422

Karimi, A., Azizi, M. H., & Ahmadi Gavlighi, H. (2020). Fractionation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Science & Nutrition, 8(5), 2395–2405. https://doi.org/10.1002/fsn3.1529 DOI: https://doi.org/10.1002/fsn3.1529

Kasiwut, J., Youravong, W., & Sirinupong, N. (2019). Angiotensin I‐converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. Journal of Food Biochemistry, 43(12). https://doi.org/10.1111/jfbc.13058 DOI: https://doi.org/10.1111/jfbc.13058

Kim, S. H., Roy, P. K., & Park, S. Y. (2024). Synergistic effects of combined flavourzyme and floating electrode–dielectric barrier discharge plasma on reduction of Escherichia coli biofilms in squid (Todarodes pacificus). Microorganisms, 12(6), 1188. https://doi.org/10.3390/microorganisms12061188 DOI: https://doi.org/10.3390/microorganisms12061188

Lammi, C., Bollati, C., Ferruzza, S., Ranaldi, G., Sambuy, Y., & Arnoldi, A. (2018). Soybean- and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum. Nutrients, 10(8), 1082. https://doi.org/10.3390/nu10081082 DOI: https://doi.org/10.3390/nu10081082

Mao, Y., Chen, L., Zhang, L., Bian, Y., & Meng, C. (2023). Synergistic hydrolysis of soy proteins using immobilized proteases: assessing peptide profiles. Foods, 12(22), 4115. https://doi.org/10.3390/foods12224115 DOI: https://doi.org/10.3390/foods12224115

Matos, F. M. de, Sales, A. C. de A., Tavares, G. M., & Castro, R. J. S. de. (2025). Effects of the Maillard reaction on the antioxidant and antihypertensive properties of black cricket (Gryllus assimilis) protein hydrolysates. ACS Food Science & Technology, 5(4), 1365–1373. https://doi.org/10.1021/acsfoodscitech.4c00947 DOI: https://doi.org/10.1021/acsfoodscitech.4c00947

Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., & Yada, R. Y. (2018). Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58(13), 2147–2163. https://doi.org/10.1080/10408398.2017.1308312 DOI: https://doi.org/10.1080/10408398.2017.1308312

Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., Stressler, T., & Fischer, L. (2015). Flavourzyme, an enzyme preparation with industrial relevance: automated nine-step purification and partial characterization of eight enzymes. Journal of Agricultural and Food Chemistry, 63(23), 5682–5693. https://doi.org/10.1021/acs.jafc.5b01665 DOI: https://doi.org/10.1021/acs.jafc.5b01665

Mirzaee, H., Ahmadi Gavlighi, H., Nikoo, M., Udenigwe, C. C., Rezvankhah, A., & Khodaiyan, F. (2024). Improved antioxidant, antihypertensive, and antidiabetic activities and tailored emulsion stability and foaming properties of mixture of corn gluten and soy protein hydrolysates via enzymatic processing and fractionation. Food Science & Nutrition, 12(11), 9749–9763. https://doi.org/10.1002/fsn3.4532 DOI: https://doi.org/10.1002/fsn3.4532

Mora-Melgem, J. A., Arámburo-Gálvez, J. G., Cárdenas-Torres, F. I., Gonzalez-Santamaria, J., Ramírez-Torres, G. I., Arvizu-Flores, A. A., Figueroa-Salcido, O. G., & Ontiveros, N. (2023). Dipeptidyl peptidase IV inhibitory peptides from chickpea proteins (Cicer arietinum L.): pharmacokinetics, molecular interactions, and multi-bioactivities. Pharmaceuticals, 16(8), 1109. https://doi.org/10.3390/ph16081109 DOI: https://doi.org/10.3390/ph16081109

Naji, A. M., & Çam, M. (2025). Comparative analysis of milk casein hydrolysates from cow, water buffalo, goat and sheep: effects of flavourzyme and neutrase on formation of bioactive peptides. Journal of Food Measurement and Characterization, 19(1), 341–355. https://doi.org/10.1007/s11694-024-02972-2 DOI: https://doi.org/10.1007/s11694-024-02972-2

O’Sullivan, D., Nongonierma, A. B., & FitzGerald, R. J. (2017). Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis. Journal of the Science of Food and Agriculture, 97(13), 4652–4655. https://doi.org/10.1002/jsfa.8306 DOI: https://doi.org/10.1002/jsfa.8306

Oliveira, L. de C., Martinez-Villaluenga, C., Frias, J., Elena Cartea, M., Francisco, M., Cristianini, M., & Peñas, E. (2024). High pressure-assisted enzymatic hydrolysis potentiates the production of quinoa protein hydrolysates with antioxidant and ACE-inhibitory activities. Food Chemistry, 447, 138887. https://doi.org/10.1016/j.foodchem.2024.138887 DOI: https://doi.org/10.1016/j.foodchem.2024.138887

Peighambardoust, S. H., Karami, Z., Pateiro, M., & Lorenzo, J. M. (2021). A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules, 11(5), 631. https://doi.org/10.3390/biom11050631 DOI: https://doi.org/10.3390/biom11050631

Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2021a). Characterization of bioactive peptides produced from green lentil (Lens culinaris) seed protein concentrate using Alcalase and Flavourzyme in single and sequential hydrolysis. Journal of Food Processing and Preservation, 45(11). https://doi.org/10.1111/jfpp.15932 DOI: https://doi.org/10.1111/jfpp.15932

Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2021b). Generation of bioactive peptides from lentil protein: degree of hydrolysis, antioxidant activity, phenol content, ACE-inhibitory activity, molecular weight, sensory, and functional properties. Journal of Food Measurement and Characterization, 15(6), 5021–5035. https://doi.org/10.1007/s11694-021-01077-4 DOI: https://doi.org/10.1007/s11694-021-01077-4

Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B., & Mirzaee, H. (2023). Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Science & Nutrition, 11(6), 2974–2989. https://doi.org/10.1002/fsn3.3279 DOI: https://doi.org/10.1002/fsn3.3279

Rocha, T. de S., Hernandez, L. M. R., Mojica, L., Johnson, M. H., Chang, Y. K., & de Mejía, E. G. (2015). Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International, 76, 150–159. https://doi.org/10.1016/j.foodres.2015.04.041 DOI: https://doi.org/10.1016/j.foodres.2015.04.041

Saetang, J., Haewphet, T., Nilsuwan, K., & Benjakul, S. (2025). ACE- and DPP-IV-inhibitory peptides from Bambara groundnut hydrolysate: elucidation using computational tools and molecular docking. Biology, 14(5), 511. https://doi.org/10.3390/biology14050511 DOI: https://doi.org/10.3390/biology14050511

Shi, M., Ahtesh, F., Mathai, M., McAinch, A. J., & Su, X. Q. (2017). Effects of fermentation conditions on the potential anti‐hypertensive peptides released from yogurt fermented by Lactobacillus helveticus and Flavourzyme ®. International Journal of Food Science & Technology, 52(1), 137–145. https://doi.org/10.1111/ijfs.13253 DOI: https://doi.org/10.1111/ijfs.13253

Suaste, N. I. J., Chel-Guerrero, L., Betancur- Ancona, D., & Bustillos, R. Z. (2023). Antioxidant and inhibitory activities of α-amylase, α-glucosidase and angiotensin-I of protein hydrolysates from “Sac-Beh” quality protein maize (QPM). Emirates Journal of Food and Agriculture. https://doi.org/10.9755/ejfa.2023.3107 DOI: https://doi.org/10.9755/ejfa.2023.3107

Sukkhown, P., Pirak, T., Jangchud, K., & Prinyawiwatkul, W. (2021). Novel peptides from dried squid head by‐products obtained from snack process. International Journal of Food Science & Technology, 56(11), 5506–5517. https://doi.org/10.1111/ijfs.15085 DOI: https://doi.org/10.1111/ijfs.15085

Sun, P., Du, W., Zheng, Y., Sun, Q., Wu, X., Zhao, Q., Mu, G., Ma, C., Li, Z., & Kong, F. (2025). Effects of Alcalase and Flavourzyme from different manufacturers on the antigenicity and mechanisms of β-lactoglobulin. LWT, 232, 118276. https://doi.org/10.1016/j.lwt.2025.118276 DOI: https://doi.org/10.1016/j.lwt.2025.118276

Tang, Y., Debnath, T., Choi, E.-J., Kim, Y. W., Ryu, J. P., Jang, S., Chung, S. U., Choi, Y.-J., & Kim, E.-K. (2018). Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis. PLOS ONE, 13(5), e0196218. https://doi.org/10.1371/journal.pone.0196218 DOI: https://doi.org/10.1371/journal.pone.0196218

Tejasari, T., Aulia, F., & Agustina, N. (2021). Inhibiting activity of angiotensin converting enzyme-1 by bean protein hydrolysate genus Phaseolus. Jurnal Penelitian Pascapanen Pertanian, 18(2), 75. https://doi.org/10.21082/jpasca.v18n2.2021.75-86 DOI: https://doi.org/10.21082/jpasca.v18n2.2021.75-86

Uraipong, C., & Zhao, J. (2016). Rice bran protein hydrolysates exhibit strong in vitro α ‐amylase, β ‐glucosidase and ACE ‐inhibition activities. Journal of the Science of Food and Agriculture, 96(4), 1101–1110. https://doi.org/10.1002/jsfa.7182 DOI: https://doi.org/10.1002/jsfa.7182

Waglay, A., & Karboune, S. (2016). Enzymatic generation of peptides from potato proteins by selected proteases and characterization of their structural properties. Biotechnology Progress, 32(2), 420–429. https://doi.org/10.1002/btpr.2245 DOI: https://doi.org/10.1002/btpr.2245

Wang, D., Zhang, M., Zou, Y., Sun, Z., & Xu, W. (2018). Optimization of flavourzyme hydrolysis condition for the preparation of antioxidant peptides from duck meat using response surface methodology. The Journal of Poultry Science, 55(3), 217–223. https://doi.org/10.2141/jpsa.0160155 DOI: https://doi.org/10.2141/jpsa.0160155

Wang, L.-S., Huang, J.-C., Chen, Y.-L., Huang, M., & Zhou, G.-H. (2015). Identification and characterization of antioxidant peptides from enzymatic hydrolysates of duck meat. Journal of Agricultural and Food Chemistry, 63(13), 3437–3444. https://doi.org/10.1021/jf506120w DOI: https://doi.org/10.1021/jf506120w

Xia, X., Song, S., Zhou, T., Zhang, H., Cui, H., Zhang, F., Hayat, K., Zhang, X., & Ho, C.-T. (2023). Preparation of saltiness-enhancing enzymatic hydrolyzed pea protein and identification of the functional small peptides of salt reduction. Journal of Agricultural and Food Chemistry, 71(21), 8140–8149. https://doi.org/10.1021/acs.jafc.3c02046 DOI: https://doi.org/10.1021/acs.jafc.3c02046

Yao, H., Yang, J., Zhan, J., Lu, Q., Su, M., & Jiang, Y. (2021). Preparation, amino acid composition, and in vitro antioxidant activity of okra seed meal protein hydrolysates. Food Science & Nutrition, 9(6), 3059–3070. https://doi.org/10.1002/fsn3.2263 DOI: https://doi.org/10.1002/fsn3.2263

Zhang, H., Zhang, Y., Javed, M., Cheng, M., Xiong, S., & Liu, Y. (2022). Gelatin hydrolysates from sliver carp (Hypophthalmichthys molitrix) improve the antioxidant and cryoprotective properties of unwashed frozen fish mince. International Journal of Food Science & Technology, 57(5), 2619–2627. https://doi.org/10.1111/ijfs.15121 DOI: https://doi.org/10.1111/ijfs.15121

Zhang, M., Zhu, L., Wu, G., Liu, T., Qi, X., & Zhang, H. (2022). Rapid screening of novel dipeptidyl peptidase-4 inhibitory peptides from pea (Pisum sativum L.) protein using peptidomics and molecular docking. Journal of Agricultural and Food Chemistry, 70(33), 10221–10228. https://doi.org/10.1021/acs.jafc.2c03949 DOI: https://doi.org/10.1021/acs.jafc.2c03949

Zhang, Y., Ke, H., Bai, T., Chen, C., Guo, T., Mu, Y., Li, H., Liao, W., Pan, Z., & Zhao, L. (2021). Characterization of umami compounds in bone meal hydrolysate. Journal of Food Science, 86(6), 2264–2275. https://doi.org/10.1111/1750-3841.15751 DOI: https://doi.org/10.1111/1750-3841.15751

Zhao, X., Cheng, Y., Xu, J., & Cui, C. (2025). Dopamine-modified hydrated silica immobilized Flavourzyme for efficient bioactive peptide release from β-lactoglobulin. Food Chemistry, 487, 144725. https://doi.org/10.1016/j.foodchem.2025.144725 DOI: https://doi.org/10.1016/j.foodchem.2025.144725

Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Shi, P., Tian, H., Li, X., & Chen, X. (2020). Isolation of novel ACE‐inhibitory peptide from naked oat globulin hydrolysates in silico approach: Molecular docking, in vivo antihypertension and effects on renin and intracellular endothelin‐1. Journal of Food Science, 85(4), 1328–1337. https://doi.org/10.1111/1750-3841.15115 DOI: https://doi.org/10.1111/1750-3841.15115

Downloads

Publicado

2025-11-28

Como Citar

Ávila-Vargas, Y. N., García-Curiel, L., Pérez-Flores, J. G., Rodríguez-Serrano, G. M., Contreras-López, E., González-Olivares, L. G., Paz-Samaniego, R., & Pérez-Escalante, E. (2025). Geração de peptídeos bioativos usando flavourzyme: potenciais funcionais e aplicações emergentes . Food Science Today, 4(1), 110–115. https://doi.org/10.58951/fstoday.2025.013

Edição

Seção

Artigo de Revisão
Loading...