Aplicação de bacteriocinas na preservação e segurança de alimentos: uma abordagem de análise bibliométrica

Aplicação de bacteriocinas na preservação e segurança de alimentos: uma abordagem de análise bibliométrica

Autores

DOI:

https://doi.org/10.58951/fstoday.2025.003

Palavras-chave:

Peptídeos antimicrobianos, Bactérias ácido láticas, Bacteriocinas, Segurança de alimentos, Estabilidade de bacteriocina, Controle de patógenos transmitidos por alimentos

Resumo

A crescente demanda de consumidores por conservantes naturais de alimentos intensificou a pesquisa sobre bacteriocinas, devido ao seu potencial para melhorar a segurança e a preservação de alimentos. Este estudo teve como objetivo realizar uma análise bibliométrica da pesquisa sobre bacteriocinas de 2003 a 2023, com foco em suas aplicações na preservação de alimentos, para identificar tendências críticas, desafios e direções futuras. A análise revelou um aumento significativo nas publicações, com uma taxa de crescimento anual de 9.89%, com países como China, Brasil e Índia  liderando as contribuições. Além disso, periódicos como "Food Control" e "Journal of Applied Microbiology" foram as principais plataformas de disseminação. A pesquisa se concentrou predominantemente em Ciência e Tecnologia de Alimentos, bem como Microbiologia, com estudos fundamentais de Leverentz et al. e Hammami et al. recebendo altas citações. Apesar de desafios como sensibilidade ao pH, estabilidade térmica e obstáculos regulatórios, os avanços em nanotecnologia e a pesquisa colaborativa global estão aprimorando a estabilidade e eficácia das bacteriocinas. O estudo também identificou temas emergentes de pesquisa, incluindo a integração de bacteriocinas em embalagens antimicrobianas e sua combinação com outros agentes antimicrobianos. Os resultados ressaltam o potencial das bacteriocinas como conservantes naturais, impulsionadas pela demanda do consumidor por alimentos minimamente processados e pela necessidade de estratégias sustentáveis de preservação de alimentos. Em conclusão, embora as bacteriocinas mostrem grande potencial, superar os desafios de aplicação e regulamentação é necessário para sua integração mais ampla em estratégias de segurança de alimentos, alinhando-se para promover soluções sustentáveis e eficazes de preservação de alimentos.

Referências

Abdulhussain Kareem, R., & Razavi, S. H. (2020). Plantaricin bacteriocins: As safe alternative antimicrobial peptides in food preservation—A review. Journal of Food Safety, 40(1). https://doi.org/10.1111/jfs.12735

Abubakar, U. U., Muhtar, U. N., & Haruna, S. (2023). Bacteriocins of Escherichia coli: A mini review. Dutse Journal of Pure and Applied Sciences, 9(3b), 129–135. https://doi.org/10.4314/dujopas.v9i3b.14

Anupama, R., & Balasingh, A. (2018). Isolation, purification and characterisation of bacteriocin producing Lactobacillus species and its antimicrobial efficacy against food borne pathogens. Indian Journal of Microbiology Research, 5(2), 147–150. https://doi.org/10.18231/2394-5478.2018.0030

Becerril, R., Nerín, C., & Silva, F. (2020). Encapsulation systems for antimicrobial food packaging components: An update. Molecules, 25(5), 1134. https://doi.org/10.3390/molecules25051134

Benítez-Chao, D. F., León-Buitimea, A., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2021). Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.630695

Chen, C. (2019). Validation of the component model for prediction of moisture sorption isotherms of two herbs and other products. Foods, 8(6), 191. https://doi.org/10.3390/foods8060191

Chen, L., Song, Z., Tan, S. Y., Zhang, H., & Yuk, H.-G. (2020). Application of bacteriocins produced from lactic acid bacteria for microbiological food safety. Current Topic in Lactic Acid Bacteria and Probiotics, 6(1), 1–8. https://doi.org/10.35732/ctlabp.2020.6.1.1

Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23–28. https://doi.org/10.1016/j.copbio.2017.07.011

Contessa, C. R., da Rosa, G. S., & Moraes, C. C. (2021). New active packaging based on biopolymeric mixture added with bacteriocin as active compound. International Journal of Molecular Sciences, 22(19), 10628. https://doi.org/10.3390/ijms221910628

da Costa, R. J., Voloski, F. L. S., Mondadori, R. G., Duval, E. H., & Fiorentini, Â. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 1–12. https://doi.org/10.1155/2019/4726510

Daba, G. M., Elkhateeb, W. A., Saleh, S. A. A., Soliman, T. N., & El-Dein, A. N. (2025). Physicochemical and sensory characterization of functional synbiotic Labneh fortified with the bacteriocin-producing Lactiplantibacillus plantarum strain GA7 and nano-encapsulated Tirmania pinoyi extract. Microbial Cell Factories, 24(1), 18. https://doi.org/10.1186/s12934-024-02631-7

Damania, P., Patel, R., Shaw, R., Kataria, R. P., & Wadia, A. (2016). Development of antimicrobial packaging materials for food preservation using bacteriocin from Lactobacillus casei. Microbiology Research, 7(1). https://doi.org/10.4081/mr.2016.6622

Delesa, D. A. (2017). Bacteriocin as an advanced technology in food industry. International Journal of Advanced Research in Biological Sciences (IJARBS), 4(12), 178–190. https://doi.org/10.22192/ijarbs.2017.04.12.018

Efendi, R., Restuhadi, F., Hasibuan, A. I. R. S., Lestari, M. I., & Rossi, E. (2024). Effect of adding bacteriocin from Lactobacillus pentosus strain MIL 195 on the quality of chicken sausage as an alternative natural preservative. BIO Web of Conferences, 99, 02023. https://doi.org/10.1051/bioconf/20249902023

Elalem, N. (2021). The Diversity of Bacteriocin and Its Antiviral Potential: An Overview. Egyptian Journal of Medical Microbiology, 30(4), 175–180. https://doi.org/10.21608/ejmm.2021.203649

Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., la Storia, A., Laghi, L., Mauriello, G., Guerzoni, M. E., & Villani, F. (2011). Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Applied and Environmental Microbiology, 77(20), 7372–7381. https://doi.org/10.1128/AEM.05521-11

Espitia, P. J. P., Soares, N. de F. F., Teófilo, R. F., Coimbra, J. S. dos R., Vitor, D. M., Batista, R. A., Ferreira, S. O., Andrade, N. J. de, & Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94(1), 199–208. https://doi.org/10.1016/j.carbpol.2013.01.003

Fahim, H. A., Khairalla, A. S., & El-Gendy, A. O. (2016). Nanotechnology: a valuable strategy to improve bacteriocin formulations. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01385

Garcha, S., & Natt, N. K. (2012). In situ control of food spoilage fungus using Lactobacillus acidophilus NCDC 291. Journal of Food Science and Technology, 49(5), 643–648. https://doi.org/10.1007/s13197-011-0482-1

García-Curiel, L., Guadalupe Pérez Flores, J., González-Olivares, L. G., Guerrero-Solano, J. A., Contreras-López, E., Pérez-Escalante, E., Portillo-Torres, L. A., & Sebastián-Nicolás, J. L. (2024). Probiotics and Metabolic Syndrome: A bibliometric analysis and overview of dietary interventions. In Weight Loss - A Multidisciplinary Perspective. IntechOpen. https://doi.org/10.5772/intechopen.1004605

García-Curiel, L., López-Cuellar, M. del R., Rodríguez-Hernández, A. I., & Chavarría-Hernández, N. (2021). Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World Journal of Microbiology and Biotechnology, 37(1), 15. https://doi.org/10.1007/s11274-020-02973-5

García-Curiel, L., Rodríguez-Hernández, A.-I., Reyes-Rodríguez, N.-E., Vega-Sánchez, V., Ray, S., López-Cuellar, Ma. -del-R., & Chavarría-Hernández, N. (2024). Infantaricin, a bacteriocin produced by Streptococcus infantarius with antilisterial activity. In Antimicrobial Peptides from Lactic Acid Bacteria (pp. 181–207). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3413-9_8

Gomes, B. C., Esteves, C. T., Palazzo, I. C. V., Darini, A. L. C., Felis, G. E., Sechi, L. A., Franco, B. D. G. M., & de Martinis, E. C. P. (2008). Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiology, 25(5), 668–675. https://doi.org/10.1016/j.fm.2008.03.008

Hammami, R., Zouhir, A., le Lay, C., ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiology, 10(1), 22. https://doi.org/10.1186/1471-2180-10-22

He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K. B., & Yousef, A. E. (2007). Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Applied and Environmental Microbiology, 73(1), 168–178. https://doi.org/10.1128/AEM.02023-06

Heinzinger, L. R., Pugh, A. R., Wagner, J. A., & Otto, M. (2023). Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics, 12(8), 1256. https://doi.org/10.3390/antibiotics12081256

Hernández, D., Cardell, E., & Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology, 99(1), 77–84. https://doi.org/10.1111/j.1365-2672.2005.02576.x

Jin, T., & Zhang, H. (2008). Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00681.x

Koniuchovaitė, A., Petkevičiūtė, A., Bernotaitė, E., Gricajeva, A., Gegeckas, A., Kalėdienė, L., & Kaunietis, A. (2023). Novel leaderless bacteriocin geobacillin 6 from thermophilic bacterium Parageobacillus thermoglucosidasius. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1207367

Kumar, M., Jain, A. K., Ghosh, M., & Ganguli, A. (2012). Potential application of an anti‐aeromonas bacteriocin of Lactococcus lactis ssp. lactis in the preservation of vegetable salad. Journal of Food Safety, 32(3), 369–378. https://doi.org/10.1111/j.1745-4565.2012.00389.x

Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D., Abdul Kari, Z., Wei, L. S., Smaoui, S., Wen Goh, K., & Ray, R. R. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1005918

Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R., & Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69(8), 4519–4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003

Mapelli, C., Musatti, A., Barbiroli, A., Saini, S., Bras, J., Cavicchioli, D., & Rollini, M. (2019). Cellulose nanofiber (CNF)–sakacin‐A active material: production, characterization and application in storage trials of smoked salmon. Journal of the Science of Food and Agriculture, 99(10), 4731–4738. https://doi.org/10.1002/jsfa.9715

Mauriello, G., de Luca, E., la Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464–469. https://doi.org/10.1111/j.1472-765X.2005.01796.x

Md Sidek, N. L., Halim, M., Tan, J. S., Abbasiliasi, S., Mustafa, S., & Ariff, A. B. (2018). Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed Research International, 2018, 1–11. https://doi.org/10.1155/2018/5973484

Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032

Mekala, P. N., & Ansari, R. M. H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation. World Journal of Biology Pharmacy and Health Sciences, 14(3), 024–035. https://doi.org/10.30574/wjbphs.2023.14.3.0245

Mills, S., Griffin, C., O’Connor, P. M., Serrano, L. M., Meijer, W. C., Hill, C., & Ross, R. P. (2017). A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83(14). https://doi.org/10.1128/AEM.00799-17

Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules, 26(22), 7055. https://doi.org/10.3390/molecules26227055

O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160–167. https://doi.org/10.1016/j.copbio.2019.12.023

O’Connor, P. M., Ross, R. P., Hill, C., & Cotter, P. D. (2015). Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food Science, 2, 51–57. https://doi.org/10.1016/j.cofs.2015.01.004

Onwuakor, C. E., Nwaugo, V. O., Nnadi, C. J., & Emetole, J. M. (2014). Effect of varied culture conditions on crude supernatant (bacteriocin) production from four Lactobacillus species isolated from locally fermented maize (Ogi). American Journal of Microbiological Research, 2(5), 125–130. https://doi.org/10.12691/ajmr-2-5-1

Pang, X., Song, X., Chen, M., Tian, S., Lu, Z., Sun, J., Li, X., Lu, Y., & Yuk, H. (2022). Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1657–1676. https://doi.org/10.1111/1541-4337.12922

Paškevičius, Š., Dapkutė, V., Misiūnas, A., Balzaris, M., Thommes, P., Sattar, A., Gleba, Y., & Ražanskienė, A. (2022). Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Scientific Reports, 12(1), 5865. https://doi.org/10.1038/s41598-022-09865-8

Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 13(S1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3

Perez, R., Aguimatang, R. H., Zendo, T., & Sonomoto, K. (2021). Bioengineering of the circular bacteriocin from Enterococcus faecium NKR-5-3 by NNK-scanning to enhance its bioactivity. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), e4309. https://doi.org/10.15414/jmbfs.4309

Pérez-Flores, J. G., García-Curiel, L., Pérez-Escalante, E., Contreras-López, E., & Olloqui, E. J. (2024). Arabinoxylans matrixes as a potential material for drug delivery systems development - A bibliometric analysis and literature review. Heliyon, 10(3), e25445. https://doi.org/10.1016/j.heliyon.2024.e25445

Porta, R., Sabbah, M., & di Pierro, P. (2022). Bio-based materials for packaging. International Journal of Molecular Sciences, 23(7), 3611. https://doi.org/10.3390/ijms23073611

Prudêncio, C. V., dos Santos, M. T., & Vanetti, M. C. D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of Food Science and Technology, 52(9), 5408–5417. https://doi.org/10.1007/s13197-014-1666-2

Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Systems Microbiology and Biomanufacturing, 2(1), 14–40. https://doi.org/10.1007/s43393-021-00044-w

Şanlı, S., Kılıçarslan, S., & Şanlı, N. (2022). Evaluation of natamycin in commercial dairy products by a green capillary zone electrophoresis method and confirmation with a Liquid Chromatography-Mass Spectrometry. Food Bioscience, 50, 102114. https://doi.org/10.1016/j.fbio.2022.102114

Sarika, A., Lipton, A., Aishwarya, M., & mol, R. R. (2018). Lactic acid bacteria from marine fish: Antimicrobial resistance and production of bacteriocin effective against L. monocytogenes in situ. Journal of Food: Microbiology, Safety & Hygiene, 3(1). https://doi.org/10.4172/2476-2059.1000128

Shafique, B., Ranjha, M. M. A. N., Murtaza, M. A., Walayat, N., Nawaz, A., Khalid, W., Mahmood, S., Nadeem, M., Manzoor, M. F., Ameer, K., Aadil, R. M., & Ibrahim, S. A. (2022). Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. microorganisms, 11(1), 85. https://doi.org/10.3390/microorganisms11010085

Sharma, H. K., Sharma, N. & Gautam, N., (2020). Efficacy of purified bacteriocin of “Brevibacillus laterosporus TK3” against Listeria monocytogenes and Staphylococcus aureus in chicken. Asian Journal of Dairy and Food Research, 39(2), 147-152. https://doi.org/10.18805/ajdfr.DR-1524

Sidhu, P. K., & Nehra, K. (2020). Bacteriocin‐capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens. IET Nanobiotechnology, 14(3), 245–252. https://doi.org/10.1049/iet-nbt.2019.0323

Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00594

Soenarno, M. S., Sumantri, C., Arief, I. I., Taufik, E., & Nuraida, L. (2022). The effectiveness of plantaricin IIA-1A5 powder application to extend the storage of fresh cow’s milk. IOP Conference Series: Earth and Environmental Science, 1020(1), 012029. https://doi.org/10.1088/1755-1315/1020/1/012029

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. ben, Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1). https://doi.org/10.1093/femsre/fuaa039

Soltani, S., Zirah, S., Rebuffat, S., Couture, F., Boutin, Y., Biron, E., Subirade, M., & Fliss, I. (2022). Gastrointestinal stability and cytotoxicity of bacteriocins from gram-positive and gram-negative bacteria: A comparative in vitro study. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.780355

Song, H., Lee, S., Han, D.-W., & Kim, J.-H. (2022). Characterization of the gut microbiota of mackerel icefish, Champsocephalus gunnari. Fishes, 8(1), 13. https://doi.org/10.3390/fishes8010013

Sulthana, R., & Archer, A. C. (2021). Bacteriocin nanoconjugates: boon to medical and food industry. Journal of Applied Microbiology, 131(3), 1056–1071. https://doi.org/10.1111/jam.14982

Thapar, P., & Kumar Salooja, M. (2023). Bacteriocins: Applications in food preservation and therapeutics. in Lactobacillus - A multifunctional genus. IntechOpen. https://doi.org/10.5772/intechopen.106871

Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods, 11(19), 3145. https://doi.org/10.3390/foods11193145

Turgis, M., Vu, K. D., Dupont, C., & Lacroix, M. (2012). Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48(2), 696–702. https://doi.org/10.1016/j.foodres.2012.06.016

Twomey, E., Hill, C., Field, D., & Begley, M. (2021). Recipe for success: Suggestions and recommendations for the isolation and characterisation of bacteriocins. International Journal of Microbiology, 2021, 1–19. https://doi.org/10.1155/2021/9990635

Wang, J., Xu, H., Liu, S., Song, B., Liu, H., Li, F., Deng, S., Wang, G., Zeng, H., Zeng, X., Xu, D., Zhang, B., & Xin, B. (2021). Toyoncin, a novel leaderless bacteriocin that is produced by Bacillus toyonensis XIN-YC13 and specifically targets B. cereus and Listeria monocytogenes. Applied and Environmental Microbiology, 87(12). https://doi.org/10.1128/AEM.00185-21

Wee, S., Chua, S. L., Yu, D., Koh, S. P., Lee, K. M., Wu, Y., & Chan, S. H. (2024). The detection, characterization, and quantification of dominant degradation products of nisin A and Z in selected dairy products by liquid chromatography–high-resolution mass spectrometry technique. JDS Communications, 5(1), 7–12. https://doi.org/10.3168/jdsc.2023-0392

Xin, B., Liu, H., Zheng, J., Xie, C., Gao, Y., Dai, D., Peng, D., Ruan, L., Chen, H., & Sun, M. (2020). In silico analysis highlights the diversity and novelty of circular bacteriocins in sequenced microbial genomes. MSystems, 5(3). https://doi.org/10.1128/msystems.00047-20

Yu, W., Guo, J., Liu, Y., Xue, X., Wang, X., Wei, L., & Ma, J. (2023). Potential impact of combined inhibition by bacteriocins and chemical substances of foodborne pathogenic and spoilage bacteria: A review. Foods, 12(16), 3128. https://doi.org/10.3390/foods12163128

Z Zaky, S. M., & Mahmoud, W. A. (2019). Effect of bacteriocin on soft cheese. Alexandria Science Exchange Journal, 40(2), 385–390. https://doi.org/10.21608/asejaiqjsae.2019.40785

Zhang, T., Zhang, Y., Li, L., Jiang, X., Chen, Z., Zhao, F., & Yi, Y. (2022). Biosynthesis and production of class II bacteriocins of food-associated lactic acid bacteria. Fermentation, 8(5), 217. https://doi.org/10.3390/fermentation8050217

Zorič Peternel, M., Čanžek Majhenič, A., Holo, H., Nes, I. F., Salehian, Z., Berlec, A., & Rogelj, I. (2010). Wide-inhibitory spectra bacteriocins produced by Lactobacillus gasseri K7. Probiotics and Antimicrobial Proteins, 2(4), 233–240. https://doi.org/10.1007/s12602-010-9044-5

Downloads

Publicado

2025-03-13

Como Citar

Hernández-Lozada, G., Pérez-Flores , J. G., García-Curiel , L., González-Olivares , L. G., Contreras-López , E., Escobar-Ramírez , M. C., & Pérez-Escalante, E. (2025). Aplicação de bacteriocinas na preservação e segurança de alimentos: uma abordagem de análise bibliométrica . Food Science Today, 4(1), 12–22. https://doi.org/10.58951/fstoday.2025.003

Edição

Seção

Artigo de Revisão
Loading...