Application of bacteriocins in food preservation and safety: A bibliometric analysis approach

Application of bacteriocins in food preservation and safety: A bibliometric analysis approach

Authors

DOI:

https://doi.org/10.58951/fstoday.2025.003

Keywords:

Antimicrobial peptides, Lactic acid bacteria, Bacteriocins, Food Safety, Bacteriocin stability, Foodborne pathogen control

Abstract

The growing consumer demand for natural food preservatives has intensified research into bacteriocins, due to their potential to enhance food safety and preservation. This study aimed to conduct a bibliometric analysis of bacteriocin research from 2003 to 2023, focusing on their applications in food preservation to identify critical trends, challenges, and future directions. The analysis revealed a significant publication increase with an annual growth rate of 9.89% with countries like China, Brazil, and India as the leaders in contributions. Also, journals like “Food Control” and “Journal of Applied Microbiology” were major dissemination platforms. The research predominantly fell under Food Science Technology and Microbiology, with foundational studies by Leverentz et al. and Hammami et al. receiving high citations. Despite challenges such as pH sensitivity, thermal stability, and regulatory hurdles, advances in nanotechnology and collaborative global research are enhancing bacteriocin stability and efficacy. The study also identified emerging research themes, including integrating bacteriocins into antimicrobial packaging and their combination with other antimicrobial agents. The findings underscore the potential of bacteriocins as natural preservatives, driven by consumer demand for minimally processed foods and the need for sustainable food preservation strategies. In conclusion, while bacteriocins show promise, overcoming application and regulatory challenges is necessary for their broader integration into food safety strategies, aligning to promote sustainable and effective food preservation solutions.

References

Abdulhussain Kareem, R., & Razavi, S. H. (2020). Plantaricin bacteriocins: As safe alternative antimicrobial peptides in food preservation—A review. Journal of Food Safety, 40(1). https://doi.org/10.1111/jfs.12735

Abubakar, U. U., Muhtar, U. N., & Haruna, S. (2023). Bacteriocins of Escherichia coli: A mini review. Dutse Journal of Pure and Applied Sciences, 9(3b), 129–135. https://doi.org/10.4314/dujopas.v9i3b.14

Anupama, R., & Balasingh, A. (2018). Isolation, purification and characterisation of bacteriocin producing Lactobacillus species and its antimicrobial efficacy against food borne pathogens. Indian Journal of Microbiology Research, 5(2), 147–150. https://doi.org/10.18231/2394-5478.2018.0030

Becerril, R., Nerín, C., & Silva, F. (2020). Encapsulation systems for antimicrobial food packaging components: An update. Molecules, 25(5), 1134. https://doi.org/10.3390/molecules25051134

Benítez-Chao, D. F., León-Buitimea, A., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2021). Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.630695

Chen, C. (2019). Validation of the component model for prediction of moisture sorption isotherms of two herbs and other products. Foods, 8(6), 191. https://doi.org/10.3390/foods8060191

Chen, L., Song, Z., Tan, S. Y., Zhang, H., & Yuk, H.-G. (2020). Application of bacteriocins produced from lactic acid bacteria for microbiological food safety. Current Topic in Lactic Acid Bacteria and Probiotics, 6(1), 1–8. https://doi.org/10.35732/ctlabp.2020.6.1.1

Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23–28. https://doi.org/10.1016/j.copbio.2017.07.011

Contessa, C. R., da Rosa, G. S., & Moraes, C. C. (2021). New active packaging based on biopolymeric mixture added with bacteriocin as active compound. International Journal of Molecular Sciences, 22(19), 10628. https://doi.org/10.3390/ijms221910628

da Costa, R. J., Voloski, F. L. S., Mondadori, R. G., Duval, E. H., & Fiorentini, Â. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 1–12. https://doi.org/10.1155/2019/4726510

Daba, G. M., Elkhateeb, W. A., Saleh, S. A. A., Soliman, T. N., & El-Dein, A. N. (2025). Physicochemical and sensory characterization of functional synbiotic Labneh fortified with the bacteriocin-producing Lactiplantibacillus plantarum strain GA7 and nano-encapsulated Tirmania pinoyi extract. Microbial Cell Factories, 24(1), 18. https://doi.org/10.1186/s12934-024-02631-7

Damania, P., Patel, R., Shaw, R., Kataria, R. P., & Wadia, A. (2016). Development of antimicrobial packaging materials for food preservation using bacteriocin from Lactobacillus casei. Microbiology Research, 7(1). https://doi.org/10.4081/mr.2016.6622

Delesa, D. A. (2017). Bacteriocin as an advanced technology in food industry. International Journal of Advanced Research in Biological Sciences (IJARBS), 4(12), 178–190. https://doi.org/10.22192/ijarbs.2017.04.12.018

Efendi, R., Restuhadi, F., Hasibuan, A. I. R. S., Lestari, M. I., & Rossi, E. (2024). Effect of adding bacteriocin from Lactobacillus pentosus strain MIL 195 on the quality of chicken sausage as an alternative natural preservative. BIO Web of Conferences, 99, 02023. https://doi.org/10.1051/bioconf/20249902023

Elalem, N. (2021). The Diversity of Bacteriocin and Its Antiviral Potential: An Overview. Egyptian Journal of Medical Microbiology, 30(4), 175–180. https://doi.org/10.21608/ejmm.2021.203649

Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., la Storia, A., Laghi, L., Mauriello, G., Guerzoni, M. E., & Villani, F. (2011). Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Applied and Environmental Microbiology, 77(20), 7372–7381. https://doi.org/10.1128/AEM.05521-11

Espitia, P. J. P., Soares, N. de F. F., Teófilo, R. F., Coimbra, J. S. dos R., Vitor, D. M., Batista, R. A., Ferreira, S. O., Andrade, N. J. de, & Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94(1), 199–208. https://doi.org/10.1016/j.carbpol.2013.01.003

Fahim, H. A., Khairalla, A. S., & El-Gendy, A. O. (2016). Nanotechnology: a valuable strategy to improve bacteriocin formulations. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01385

Garcha, S., & Natt, N. K. (2012). In situ control of food spoilage fungus using Lactobacillus acidophilus NCDC 291. Journal of Food Science and Technology, 49(5), 643–648. https://doi.org/10.1007/s13197-011-0482-1

García-Curiel, L., Guadalupe Pérez Flores, J., González-Olivares, L. G., Guerrero-Solano, J. A., Contreras-López, E., Pérez-Escalante, E., Portillo-Torres, L. A., & Sebastián-Nicolás, J. L. (2024). Probiotics and Metabolic Syndrome: A bibliometric analysis and overview of dietary interventions. In Weight Loss - A Multidisciplinary Perspective. IntechOpen. https://doi.org/10.5772/intechopen.1004605

García-Curiel, L., López-Cuellar, M. del R., Rodríguez-Hernández, A. I., & Chavarría-Hernández, N. (2021). Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World Journal of Microbiology and Biotechnology, 37(1), 15. https://doi.org/10.1007/s11274-020-02973-5

García-Curiel, L., Rodríguez-Hernández, A.-I., Reyes-Rodríguez, N.-E., Vega-Sánchez, V., Ray, S., López-Cuellar, Ma. -del-R., & Chavarría-Hernández, N. (2024). Infantaricin, a bacteriocin produced by Streptococcus infantarius with antilisterial activity. In Antimicrobial Peptides from Lactic Acid Bacteria (pp. 181–207). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3413-9_8

Gomes, B. C., Esteves, C. T., Palazzo, I. C. V., Darini, A. L. C., Felis, G. E., Sechi, L. A., Franco, B. D. G. M., & de Martinis, E. C. P. (2008). Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiology, 25(5), 668–675. https://doi.org/10.1016/j.fm.2008.03.008

Hammami, R., Zouhir, A., le Lay, C., ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiology, 10(1), 22. https://doi.org/10.1186/1471-2180-10-22

He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K. B., & Yousef, A. E. (2007). Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Applied and Environmental Microbiology, 73(1), 168–178. https://doi.org/10.1128/AEM.02023-06

Heinzinger, L. R., Pugh, A. R., Wagner, J. A., & Otto, M. (2023). Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics, 12(8), 1256. https://doi.org/10.3390/antibiotics12081256

Hernández, D., Cardell, E., & Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology, 99(1), 77–84. https://doi.org/10.1111/j.1365-2672.2005.02576.x

Jin, T., & Zhang, H. (2008). Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00681.x

Koniuchovaitė, A., Petkevičiūtė, A., Bernotaitė, E., Gricajeva, A., Gegeckas, A., Kalėdienė, L., & Kaunietis, A. (2023). Novel leaderless bacteriocin geobacillin 6 from thermophilic bacterium Parageobacillus thermoglucosidasius. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1207367

Kumar, M., Jain, A. K., Ghosh, M., & Ganguli, A. (2012). Potential application of an anti‐aeromonas bacteriocin of Lactococcus lactis ssp. lactis in the preservation of vegetable salad. Journal of Food Safety, 32(3), 369–378. https://doi.org/10.1111/j.1745-4565.2012.00389.x

Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D., Abdul Kari, Z., Wei, L. S., Smaoui, S., Wen Goh, K., & Ray, R. R. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1005918

Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R., & Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69(8), 4519–4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003

Mapelli, C., Musatti, A., Barbiroli, A., Saini, S., Bras, J., Cavicchioli, D., & Rollini, M. (2019). Cellulose nanofiber (CNF)–sakacin‐A active material: production, characterization and application in storage trials of smoked salmon. Journal of the Science of Food and Agriculture, 99(10), 4731–4738. https://doi.org/10.1002/jsfa.9715

Mauriello, G., de Luca, E., la Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464–469. https://doi.org/10.1111/j.1472-765X.2005.01796.x

Md Sidek, N. L., Halim, M., Tan, J. S., Abbasiliasi, S., Mustafa, S., & Ariff, A. B. (2018). Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed Research International, 2018, 1–11. https://doi.org/10.1155/2018/5973484

Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032

Mekala, P. N., & Ansari, R. M. H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation. World Journal of Biology Pharmacy and Health Sciences, 14(3), 024–035. https://doi.org/10.30574/wjbphs.2023.14.3.0245

Mills, S., Griffin, C., O’Connor, P. M., Serrano, L. M., Meijer, W. C., Hill, C., & Ross, R. P. (2017). A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83(14). https://doi.org/10.1128/AEM.00799-17

Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules, 26(22), 7055. https://doi.org/10.3390/molecules26227055

O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160–167. https://doi.org/10.1016/j.copbio.2019.12.023

O’Connor, P. M., Ross, R. P., Hill, C., & Cotter, P. D. (2015). Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food Science, 2, 51–57. https://doi.org/10.1016/j.cofs.2015.01.004

Onwuakor, C. E., Nwaugo, V. O., Nnadi, C. J., & Emetole, J. M. (2014). Effect of varied culture conditions on crude supernatant (bacteriocin) production from four Lactobacillus species isolated from locally fermented maize (Ogi). American Journal of Microbiological Research, 2(5), 125–130. https://doi.org/10.12691/ajmr-2-5-1

Pang, X., Song, X., Chen, M., Tian, S., Lu, Z., Sun, J., Li, X., Lu, Y., & Yuk, H. (2022). Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1657–1676. https://doi.org/10.1111/1541-4337.12922

Paškevičius, Š., Dapkutė, V., Misiūnas, A., Balzaris, M., Thommes, P., Sattar, A., Gleba, Y., & Ražanskienė, A. (2022). Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Scientific Reports, 12(1), 5865. https://doi.org/10.1038/s41598-022-09865-8

Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 13(S1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3

Perez, R., Aguimatang, R. H., Zendo, T., & Sonomoto, K. (2021). Bioengineering of the circular bacteriocin from Enterococcus faecium NKR-5-3 by NNK-scanning to enhance its bioactivity. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), e4309. https://doi.org/10.15414/jmbfs.4309

Pérez-Flores, J. G., García-Curiel, L., Pérez-Escalante, E., Contreras-López, E., & Olloqui, E. J. (2024). Arabinoxylans matrixes as a potential material for drug delivery systems development - A bibliometric analysis and literature review. Heliyon, 10(3), e25445. https://doi.org/10.1016/j.heliyon.2024.e25445

Porta, R., Sabbah, M., & di Pierro, P. (2022). Bio-based materials for packaging. International Journal of Molecular Sciences, 23(7), 3611. https://doi.org/10.3390/ijms23073611

Prudêncio, C. V., dos Santos, M. T., & Vanetti, M. C. D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of Food Science and Technology, 52(9), 5408–5417. https://doi.org/10.1007/s13197-014-1666-2

Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Systems Microbiology and Biomanufacturing, 2(1), 14–40. https://doi.org/10.1007/s43393-021-00044-w

Şanlı, S., Kılıçarslan, S., & Şanlı, N. (2022). Evaluation of natamycin in commercial dairy products by a green capillary zone electrophoresis method and confirmation with a Liquid Chromatography-Mass Spectrometry. Food Bioscience, 50, 102114. https://doi.org/10.1016/j.fbio.2022.102114

Sarika, A., Lipton, A., Aishwarya, M., & mol, R. R. (2018). Lactic acid bacteria from marine fish: Antimicrobial resistance and production of bacteriocin effective against L. monocytogenes in situ. Journal of Food: Microbiology, Safety & Hygiene, 3(1). https://doi.org/10.4172/2476-2059.1000128

Shafique, B., Ranjha, M. M. A. N., Murtaza, M. A., Walayat, N., Nawaz, A., Khalid, W., Mahmood, S., Nadeem, M., Manzoor, M. F., Ameer, K., Aadil, R. M., & Ibrahim, S. A. (2022). Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. microorganisms, 11(1), 85. https://doi.org/10.3390/microorganisms11010085

Sharma, H. K., Sharma, N. & Gautam, N., (2020). Efficacy of purified bacteriocin of “Brevibacillus laterosporus TK3” against Listeria monocytogenes and Staphylococcus aureus in chicken. Asian Journal of Dairy and Food Research, 39(2), 147-152. https://doi.org/10.18805/ajdfr.DR-1524

Sidhu, P. K., & Nehra, K. (2020). Bacteriocin‐capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens. IET Nanobiotechnology, 14(3), 245–252. https://doi.org/10.1049/iet-nbt.2019.0323

Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00594

Soenarno, M. S., Sumantri, C., Arief, I. I., Taufik, E., & Nuraida, L. (2022). The effectiveness of plantaricin IIA-1A5 powder application to extend the storage of fresh cow’s milk. IOP Conference Series: Earth and Environmental Science, 1020(1), 012029. https://doi.org/10.1088/1755-1315/1020/1/012029

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. ben, Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1). https://doi.org/10.1093/femsre/fuaa039

Soltani, S., Zirah, S., Rebuffat, S., Couture, F., Boutin, Y., Biron, E., Subirade, M., & Fliss, I. (2022). Gastrointestinal stability and cytotoxicity of bacteriocins from gram-positive and gram-negative bacteria: A comparative in vitro study. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.780355

Song, H., Lee, S., Han, D.-W., & Kim, J.-H. (2022). Characterization of the gut microbiota of mackerel icefish, Champsocephalus gunnari. Fishes, 8(1), 13. https://doi.org/10.3390/fishes8010013

Sulthana, R., & Archer, A. C. (2021). Bacteriocin nanoconjugates: boon to medical and food industry. Journal of Applied Microbiology, 131(3), 1056–1071. https://doi.org/10.1111/jam.14982

Thapar, P., & Kumar Salooja, M. (2023). Bacteriocins: Applications in food preservation and therapeutics. in Lactobacillus - A multifunctional genus. IntechOpen. https://doi.org/10.5772/intechopen.106871

Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods, 11(19), 3145. https://doi.org/10.3390/foods11193145

Turgis, M., Vu, K. D., Dupont, C., & Lacroix, M. (2012). Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48(2), 696–702. https://doi.org/10.1016/j.foodres.2012.06.016

Twomey, E., Hill, C., Field, D., & Begley, M. (2021). Recipe for success: Suggestions and recommendations for the isolation and characterisation of bacteriocins. International Journal of Microbiology, 2021, 1–19. https://doi.org/10.1155/2021/9990635

Wang, J., Xu, H., Liu, S., Song, B., Liu, H., Li, F., Deng, S., Wang, G., Zeng, H., Zeng, X., Xu, D., Zhang, B., & Xin, B. (2021). Toyoncin, a novel leaderless bacteriocin that is produced by Bacillus toyonensis XIN-YC13 and specifically targets B. cereus and Listeria monocytogenes. Applied and Environmental Microbiology, 87(12). https://doi.org/10.1128/AEM.00185-21

Wee, S., Chua, S. L., Yu, D., Koh, S. P., Lee, K. M., Wu, Y., & Chan, S. H. (2024). The detection, characterization, and quantification of dominant degradation products of nisin A and Z in selected dairy products by liquid chromatography–high-resolution mass spectrometry technique. JDS Communications, 5(1), 7–12. https://doi.org/10.3168/jdsc.2023-0392

Xin, B., Liu, H., Zheng, J., Xie, C., Gao, Y., Dai, D., Peng, D., Ruan, L., Chen, H., & Sun, M. (2020). In silico analysis highlights the diversity and novelty of circular bacteriocins in sequenced microbial genomes. MSystems, 5(3). https://doi.org/10.1128/msystems.00047-20

Yu, W., Guo, J., Liu, Y., Xue, X., Wang, X., Wei, L., & Ma, J. (2023). Potential impact of combined inhibition by bacteriocins and chemical substances of foodborne pathogenic and spoilage bacteria: A review. Foods, 12(16), 3128. https://doi.org/10.3390/foods12163128

Z Zaky, S. M., & Mahmoud, W. A. (2019). Effect of bacteriocin on soft cheese. Alexandria Science Exchange Journal, 40(2), 385–390. https://doi.org/10.21608/asejaiqjsae.2019.40785

Zhang, T., Zhang, Y., Li, L., Jiang, X., Chen, Z., Zhao, F., & Yi, Y. (2022). Biosynthesis and production of class II bacteriocins of food-associated lactic acid bacteria. Fermentation, 8(5), 217. https://doi.org/10.3390/fermentation8050217

Zorič Peternel, M., Čanžek Majhenič, A., Holo, H., Nes, I. F., Salehian, Z., Berlec, A., & Rogelj, I. (2010). Wide-inhibitory spectra bacteriocins produced by Lactobacillus gasseri K7. Probiotics and Antimicrobial Proteins, 2(4), 233–240. https://doi.org/10.1007/s12602-010-9044-5

Downloads

Published

2025-03-13

How to Cite

Hernández-Lozada, G., Pérez-Flores , J. G., García-Curiel , L., González-Olivares , L. G., Contreras-López , E., Escobar-Ramírez , M. C., & Pérez-Escalante, E. (2025). Application of bacteriocins in food preservation and safety: A bibliometric analysis approach. Food Science Today, 4(1), 12–22. https://doi.org/10.58951/fstoday.2025.003

Issue

Section

Review Article
Loading...