Effects of creatine supplementation on strength exercise and its optimization through carbohydrates: A review
DOI:
https://doi.org/10.58951/fstoday.2023.52Keywords:
Nutritional supplementation, Creatine, Carbohydrates, High-intensity exerciseAbstract
Nutritional supplements integrated with any physical or sports activity are substances aimed at increasing physical performance, improving physical effort efficiency, enhancing physical recovery processes after intense exertion, enhancing training quality, and facilitating physiological adaptations. Among the most commonly used supplements is creatine (CR), a non-essential nitrogenous compound formed by three amino acids: glycine, arginine, and methionine, whose main benefit lies in improving performance in high-intensity activities. The consumption of CR along with carbohydrate (CHO) sources promotes supplement absorption compared to isolated consumption due to increased plasma insulin levels. The human body can absorb approximately 25% more CR when ingested with a CHO source. This review aimed to provide an expanded outlook on the consumption of CR combined with CHO sources and its relationship with increased CR transport into muscle cells in individuals engaging in strength exercises. Studies have shown that the increase or improvement in CR absorption by muscle cells may be related to increased blood glucose levels and consequent insulin release, which acts in a co-dependent and direct manner on the membrane transporter that regulates the entry of CR together with sodium into the intracellular environment, demonstrating that CHO supplementation is not necessary every time CR is consumed, but instead that this improvement consists of increased serum glucose and insulin release.
References
Andres, S., Ziegenhagen, R., Trefflich, I., Pevny, S., Schultrich, K., Braun, H., Schänzer, W., Hirsch-Ernst, K. I., Schäfer, B., & Lampen, A. (2017). Creatine and creatine forms intended for sports nutrition. Molecular Nutrition & Food Research, 61(6), 1600772. https://doi.org/10.1002/mnfr.201600772
Atakan, M. M., Karavelioğlu, M. B., Harmancı, H., Cook, M., & Bulut, S. (2019). Short term creatine loading without weight gain improves sprint, agility and leg strength performance in female futsal players. Science & Sports, 34(5), 321–327. https://doi.org/10.1016/j.scispo.2018.11.003
Balsom, P. D., Ekblom, B., Söerlund, K., Sjödln, B., & Hultman, E. (1993). Creatine supplementation and dynamic high‐intensity intermittent exercise. Scandinavian Journal of Medicine & Science in Sports, 3(3), 143–149. https://doi.org/10.1111/j.1600-0838.1993.tb00378.x
Burke, D. G., Candow, D. G., Chilibeck, P. D., MacNeil, L. G., Roy, B. D., Tarnopolsky, M. A., & Ziegenfuss, T. (2008). Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. International Journal of Sport Nutrition and Exercise Metabolism, 18(4), 389–398. https://doi.org/10.1123/ijsnem.18.4.389
Candow, D. G., Forbes, S. C., Chilibeck, P. D., Cornish, S. M., Antonio, J., & Kreider, R. B. (2019). Variables influencing the effectiveness of creatine supplementation as a therapeutic intervention for sarcopenia. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00124
Chilibeck, P., Kaviani, M., Candow, D., & Zello, G. A. (2017). Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access Journal of Sports Medicine, 8, 213–226. https://doi.org/10.2147/OAJSM.S123529
Cooper, R., Naclerio, F., Allgrove, J., & Jimenez, A. (2012). Creatine supplementation with specific view to exercise/sports performance: An update. Journal of the International Society of Sports Nutrition, 9(1). https://doi.org/10.1186/1550-2783-9-33
Cribb, P. J., Williams, A. D., & Hayes, A. (2007). A creatine-protein-carbohydrate supplement enhances responses to resistance training. Medicine and Science in Sports and Exercise, 39(11), 1960–1968. https://doi.org/10.1249/mss.0b013e31814fb52a
Engelhardt, M., Neumann, G., Berbalk, A., & Reuter, I. (1998). Creatine supplementation in endurance sports. Medicine and Science in Sports and Exercise, 30(7), 1123–1129. https://doi.org/10.1097/00005768-199807000-00016
Forbes, S. C., Candow, D. G., Neto, J. H. F., Kennedy, M. D., Forbes, J. L., Machado, M., Bustillo, E., Gomez-Lopez, J., Zapata, A., & Antonio, J. (2023). Creatine supplementation and endurance performance: surges and sprints to win the race. Journal of the International Society of Sports Nutrition, 20(1). https://doi.org/10.1080/15502783.2023.2204071
Green, A. L., Hultman, E., Macdonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. American Journal of Physiology - Endocrinology and Metabolism, 271(5 34-5), E821–E826. https://doi.org/10.1152/ajpendo.1996.271.5.e821
Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K., & Hultman, E. (1993). Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clinical Science, 84(5), 565–571. https://doi.org/10.1042/cs0840565
Gualano, B., Rawson, E. S., Candow, D. G., & Chilibeck, P. D. (2016). Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids, 48(8), 1793–1805. https://doi.org/10.1007/s00726-016-2239-7
Hall, M., Manetta, E., & Tupper, K. (2021). Creatine supplementation: An update. Current Sports Medicine Reports, 20(7), 338–344. https://doi.org/10.1249/JSR.0000000000000863
Harris, R. C., Soderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367–374. https://doi.org/10.1042/cs0830367
Harty, P. S., Zabriskie, H. A., Erickson, J. L., Molling, P. E., Kerksick, C. M., & Jagim, A. R. (2018). Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. Journal of the International Society of Sports Nutrition, 15(1). https://doi.org/10.1186/s12970-018-0247-6
Hespel, P., Eijnde, B. O. T., Van Leemputte, M., Ursø, B., Greenhaff, P. L., Labarque, V., Dymarkowski, S., Van Hecke, P., & Richter, E. A. (2001). Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. Journal of Physiology, 536(2), 625–633. https://doi.org/10.1111/j.1469-7793.2001.0625c.xd
Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. Journal of Applied Physiology, 81(1), 232–237. https://doi.org/10.1152/jappl.1996.81.1.232
Jagim, A. R., Harty, P. S., & Camic, C. L. (2019). Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients, 11(2), 254. https://doi.org/10.3390/nu11020254
Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1). https://doi.org/10.1186/s12970-017-0173-z
Lanhers, C., Pereira, B., Naughton, G., Trousselard, M., Lesage, F. X., & Dutheil, F. (2017). Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sports Medicine, 47(1), 163–173. https://doi.org/10.1007/s40279-016-0571-4
Lemon, P. W. R. (2002). Dietary creatine supplementation and exercise performance: Why inconsistent results? Canadian Journal of Applied Physiology, 27(6), 663–680. https://doi.org/10.1139/h02-039
Mielgo-Ayuso, J., Calleja-Gonzalez, J., Marqués-Jiménez, D., Caballero-García, A., Córdova, A., & Fernández-Lázaro, D. (2019). Effects of creatine supplementation on athletic performance in soccer players: A systematic review and meta-analysis. Nutrients, 11(4), 757. https://doi.org/10.3390/nu11040757
Minayo, M. C. S. (2010). O desafio do conhecimento: pesquisa qualitativa em saúde. Hucitec. São Paulo. 416 p.
Persky, A. M., & Rawson, E. S. (2007). Safety of creatine supplementation. In: Salomons, G. S. & Wyss, M. (Eds.). Creatine and creatine kinase in health and disease. Subcellular Biochemistry, 46, pp. 275–289. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6486-9_14
Roberts, P. A., Fox, J., Peirce, N., Jones, S. W., Casey, A., & Greenhaff, P. L. (2016). Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids, 48(8), 1831–1842. https://doi.org/10.1007/s00726-016-2252-x
Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196
Steenge, G. R., Simpson, E. J., & Greenhaff, P. L. (2000). Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of Applied Physiology, 89(3), 1165–1171. https://doi.org/10.1152/jappl.2000.89.3.1165
Syrotuik, D. G., & Bell, G. J. (2004). Acute creatine monohydrate supplementation: A descriptive physiological profile of responders vs. nonresponders. Journal of Strength and Conditioning Research, 18(3), 610–617. https://doi.org/10.1519/12392.1
Tarnopolsky, M. A., Parise, G., Yardley, N. J., Ballantyne, C. S., Olatunji, S., & Phillips, S. M. (2001). Creatine-dextrose and protein-dextrose induce similar strength gains during training. Medicine and Science in Sports and Exercise, 33(12), 2044–2052. https://doi.org/10.1097/00005768-200112000-00011
Theodorou, A. S., Paradisis, G., Smpokos, E., Chatzinikolaou, A., Fatouros, I., King, R. F. G. J., & Cooke, C. B. (2017). The effect of combined supplementation of carbohydrates and creatine on anaerobic performance. Biology of Sport, 34(2), 169–175. https://doi.org/10.5114/biolsport.2017.65336
Tomcik, K. A., Camera, D. M., Bone, J. L., Ross, M. L., Jeacocke, N. A., Tachtsis, B., Senden, J., Van Loon, L. J. C., Hawley, J. A., & Burke, L. M. (2018). Effects of creatine and carbohydrate loading on cycling time trial performance. Medicine and Science in Sports and Exercise, 50(1), 141–150. https://doi.org/10.1249/MSS.0000000000001401
Valenzuela, P. L., Morales, J. S., Emanuele, E., Pareja-Galeano, H., & Lucia, A. (2019). Supplements with purported effects on muscle mass and strength. European Journal of Nutrition, 58(8), 2983–3008. https://doi.org/10.1007/s00394-018-1882-z
Wax, B., Kerksick, C. M., Jagim, A. R., Mayo, J. J., Lyons, B. C., & Kreider, R. B. (2021). Creatine for exercise and sports performance, with recovery considerations for healthy populations. Nutrients, 13(6), 1915. https://doi.org/10.3390/nu13061915
Williams, J., Abt, G., & Kilding, A. E. (2014). Effects of creatine monohydrate supplementation on simulated soccer performance. International Journal of Sports Physiology and Performance, 9(3), 503–510. https://doi.org/10.1123/IJSPP.2013-0407
Zuniga, J. M., Housh, T. J., Camic, C. L., Hendrix, C. R., Mielke, M., Johnson, G. O., Housh, D. J., & Schmidt, R. J. (2012). The effects of creatine monohydrate loading on anaerobic performance and one-repetition maximum strength. Journal of Strength and Conditioning Research, 26(6), 1651–1656. https://doi.org/10.1519/JSC.0b013e318234eba1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Raul Augusto Lunardello, Yago Viccari Agostinho, Kelli Cristina Paiva, Lucas Duarte Manhas Ferreira do Vales, Mariana Pereira Nobrega
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.