Effects of creatine supplementation on strength exercise and its optimization through carbohydrates: A review

Effects of creatine supplementation on strength exercise and its optimization through carbohydrates: A review

Authors

DOI:

https://doi.org/10.58951/fstoday.2023.52

Keywords:

Nutritional supplementation, Creatine, Carbohydrates, High-intensity exercise

Abstract

Nutritional supplements integrated with any physical or sports activity are substances aimed at increasing physical performance, improving physical effort efficiency, enhancing physical recovery processes after intense exertion,  enhancing training quality, and facilitating physiological adaptations. Among the most commonly used supplements is creatine (CR), a non-essential nitrogenous compound formed by three amino acids: glycine, arginine, and methionine, whose main benefit lies in improving performance in high-intensity activities. The consumption of CR along with carbohydrate (CHO) sources promotes supplement absorption compared to isolated consumption due to increased plasma insulin levels. The human body can absorb approximately 25% more CR when ingested with a CHO source. This review aimed to provide an expanded outlook on the consumption of CR combined with CHO sources and its relationship with increased CR transport into muscle cells in individuals engaging in strength exercises. Studies have shown that the increase or improvement in CR absorption by muscle cells may be related to increased blood glucose levels and consequent insulin release, which acts in a co-dependent and direct manner on the membrane transporter that regulates the entry of CR together with sodium into the intracellular environment, demonstrating that CHO supplementation is not necessary every time CR is consumed, but instead that this improvement consists of increased serum glucose and insulin release.

References

Andres, S., Ziegenhagen, R., Trefflich, I., Pevny, S., Schultrich, K., Braun, H., Schänzer, W., Hirsch-Ernst, K. I., Schäfer, B., & Lampen, A. (2017). Creatine and creatine forms intended for sports nutrition. Molecular Nutrition & Food Research, 61(6), 1600772. https://doi.org/10.1002/mnfr.201600772

Atakan, M. M., Karavelioğlu, M. B., Harmancı, H., Cook, M., & Bulut, S. (2019). Short term creatine loading without weight gain improves sprint, agility and leg strength performance in female futsal players. Science & Sports, 34(5), 321–327. https://doi.org/10.1016/j.scispo.2018.11.003

Balsom, P. D., Ekblom, B., Söerlund, K., Sjödln, B., & Hultman, E. (1993). Creatine supplementation and dynamic high‐intensity intermittent exercise. Scandinavian Journal of Medicine & Science in Sports, 3(3), 143–149. https://doi.org/10.1111/j.1600-0838.1993.tb00378.x

Burke, D. G., Candow, D. G., Chilibeck, P. D., MacNeil, L. G., Roy, B. D., Tarnopolsky, M. A., & Ziegenfuss, T. (2008). Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. International Journal of Sport Nutrition and Exercise Metabolism, 18(4), 389–398. https://doi.org/10.1123/ijsnem.18.4.389

Candow, D. G., Forbes, S. C., Chilibeck, P. D., Cornish, S. M., Antonio, J., & Kreider, R. B. (2019). Variables influencing the effectiveness of creatine supplementation as a therapeutic intervention for sarcopenia. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00124

Chilibeck, P., Kaviani, M., Candow, D., & Zello, G. A. (2017). Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access Journal of Sports Medicine, 8, 213–226. https://doi.org/10.2147/OAJSM.S123529

Cooper, R., Naclerio, F., Allgrove, J., & Jimenez, A. (2012). Creatine supplementation with specific view to exercise/sports performance: An update. Journal of the International Society of Sports Nutrition, 9(1). https://doi.org/10.1186/1550-2783-9-33

Cribb, P. J., Williams, A. D., & Hayes, A. (2007). A creatine-protein-carbohydrate supplement enhances responses to resistance training. Medicine and Science in Sports and Exercise, 39(11), 1960–1968. https://doi.org/10.1249/mss.0b013e31814fb52a

Engelhardt, M., Neumann, G., Berbalk, A., & Reuter, I. (1998). Creatine supplementation in endurance sports. Medicine and Science in Sports and Exercise, 30(7), 1123–1129. https://doi.org/10.1097/00005768-199807000-00016

Forbes, S. C., Candow, D. G., Neto, J. H. F., Kennedy, M. D., Forbes, J. L., Machado, M., Bustillo, E., Gomez-Lopez, J., Zapata, A., & Antonio, J. (2023). Creatine supplementation and endurance performance: surges and sprints to win the race. Journal of the International Society of Sports Nutrition, 20(1). https://doi.org/10.1080/15502783.2023.2204071

Green, A. L., Hultman, E., Macdonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. American Journal of Physiology - Endocrinology and Metabolism, 271(5 34-5), E821–E826. https://doi.org/10.1152/ajpendo.1996.271.5.e821

Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K., & Hultman, E. (1993). Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clinical Science, 84(5), 565–571. https://doi.org/10.1042/cs0840565

Gualano, B., Rawson, E. S., Candow, D. G., & Chilibeck, P. D. (2016). Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids, 48(8), 1793–1805. https://doi.org/10.1007/s00726-016-2239-7

Hall, M., Manetta, E., & Tupper, K. (2021). Creatine supplementation: An update. Current Sports Medicine Reports, 20(7), 338–344. https://doi.org/10.1249/JSR.0000000000000863

Harris, R. C., Soderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367–374. https://doi.org/10.1042/cs0830367

Harty, P. S., Zabriskie, H. A., Erickson, J. L., Molling, P. E., Kerksick, C. M., & Jagim, A. R. (2018). Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. Journal of the International Society of Sports Nutrition, 15(1). https://doi.org/10.1186/s12970-018-0247-6

Hespel, P., Eijnde, B. O. T., Van Leemputte, M., Ursø, B., Greenhaff, P. L., Labarque, V., Dymarkowski, S., Van Hecke, P., & Richter, E. A. (2001). Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. Journal of Physiology, 536(2), 625–633. https://doi.org/10.1111/j.1469-7793.2001.0625c.xd

Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. Journal of Applied Physiology, 81(1), 232–237. https://doi.org/10.1152/jappl.1996.81.1.232

Jagim, A. R., Harty, P. S., & Camic, C. L. (2019). Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients, 11(2), 254. https://doi.org/10.3390/nu11020254

Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1). https://doi.org/10.1186/s12970-017-0173-z

Lanhers, C., Pereira, B., Naughton, G., Trousselard, M., Lesage, F. X., & Dutheil, F. (2017). Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sports Medicine, 47(1), 163–173. https://doi.org/10.1007/s40279-016-0571-4

Lemon, P. W. R. (2002). Dietary creatine supplementation and exercise performance: Why inconsistent results? Canadian Journal of Applied Physiology, 27(6), 663–680. https://doi.org/10.1139/h02-039

Mielgo-Ayuso, J., Calleja-Gonzalez, J., Marqués-Jiménez, D., Caballero-García, A., Córdova, A., & Fernández-Lázaro, D. (2019). Effects of creatine supplementation on athletic performance in soccer players: A systematic review and meta-analysis. Nutrients, 11(4), 757. https://doi.org/10.3390/nu11040757

Minayo, M. C. S. (2010). O desafio do conhecimento: pesquisa qualitativa em saúde. Hucitec. São Paulo. 416 p.

Persky, A. M., & Rawson, E. S. (2007). Safety of creatine supplementation. In: Salomons, G. S. & Wyss, M. (Eds.). Creatine and creatine kinase in health and disease. Subcellular Biochemistry, 46, pp. 275–289. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6486-9_14

Roberts, P. A., Fox, J., Peirce, N., Jones, S. W., Casey, A., & Greenhaff, P. L. (2016). Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids, 48(8), 1831–1842. https://doi.org/10.1007/s00726-016-2252-x

Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196

Steenge, G. R., Simpson, E. J., & Greenhaff, P. L. (2000). Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of Applied Physiology, 89(3), 1165–1171. https://doi.org/10.1152/jappl.2000.89.3.1165

Syrotuik, D. G., & Bell, G. J. (2004). Acute creatine monohydrate supplementation: A descriptive physiological profile of responders vs. nonresponders. Journal of Strength and Conditioning Research, 18(3), 610–617. https://doi.org/10.1519/12392.1

Tarnopolsky, M. A., Parise, G., Yardley, N. J., Ballantyne, C. S., Olatunji, S., & Phillips, S. M. (2001). Creatine-dextrose and protein-dextrose induce similar strength gains during training. Medicine and Science in Sports and Exercise, 33(12), 2044–2052. https://doi.org/10.1097/00005768-200112000-00011

Theodorou, A. S., Paradisis, G., Smpokos, E., Chatzinikolaou, A., Fatouros, I., King, R. F. G. J., & Cooke, C. B. (2017). The effect of combined supplementation of carbohydrates and creatine on anaerobic performance. Biology of Sport, 34(2), 169–175. https://doi.org/10.5114/biolsport.2017.65336

Tomcik, K. A., Camera, D. M., Bone, J. L., Ross, M. L., Jeacocke, N. A., Tachtsis, B., Senden, J., Van Loon, L. J. C., Hawley, J. A., & Burke, L. M. (2018). Effects of creatine and carbohydrate loading on cycling time trial performance. Medicine and Science in Sports and Exercise, 50(1), 141–150. https://doi.org/10.1249/MSS.0000000000001401

Valenzuela, P. L., Morales, J. S., Emanuele, E., Pareja-Galeano, H., & Lucia, A. (2019). Supplements with purported effects on muscle mass and strength. European Journal of Nutrition, 58(8), 2983–3008. https://doi.org/10.1007/s00394-018-1882-z

Wax, B., Kerksick, C. M., Jagim, A. R., Mayo, J. J., Lyons, B. C., & Kreider, R. B. (2021). Creatine for exercise and sports performance, with recovery considerations for healthy populations. Nutrients, 13(6), 1915. https://doi.org/10.3390/nu13061915

Williams, J., Abt, G., & Kilding, A. E. (2014). Effects of creatine monohydrate supplementation on simulated soccer performance. International Journal of Sports Physiology and Performance, 9(3), 503–510. https://doi.org/10.1123/IJSPP.2013-0407

Zuniga, J. M., Housh, T. J., Camic, C. L., Hendrix, C. R., Mielke, M., Johnson, G. O., Housh, D. J., & Schmidt, R. J. (2012). The effects of creatine monohydrate loading on anaerobic performance and one-repetition maximum strength. Journal of Strength and Conditioning Research, 26(6), 1651–1656. https://doi.org/10.1519/JSC.0b013e318234eba1

Published

2023-07-13

How to Cite

Lunardello, R. A., Agostinho, Y. V., Paiva, K. C., Vales, L. D. M. F. do, & Nobrega, M. P. (2023). Effects of creatine supplementation on strength exercise and its optimization through carbohydrates: A review. Food Science Today, 2(1). https://doi.org/10.58951/fstoday.2023.52

Issue

Section

Review Article
Loading...