Extração assistida por ultrassom utilizando o líquido iônico [BMIM][Cl] como método eficaz para recuperar compostos fenólicos do coproduto do processamento da goiaba
DOI:
https://doi.org/10.58951/fstoday.v1i1.5Palavras-chave:
Ultrassom, Líquido Iônico, Compostos Fenólicos, Coproduto de goiaba, Desenho ExperimentalResumo
Os líquidos iônicos (LI) representam uma alternativa inovadora aos solventes orgânicos clássicos para a recuperação de compostos fenólicos. Neste estudo, a influência de diferentes parâmetros na extração de compostos fenólicos do coproduto de goiaba vermelha utilizando o líquido iônico [BMIM][Cl] associado à extração assistida por ultrassom (ILUAE) foi comparada à extração metanólica. O LI [BMIM][Cl] foi sintetizado e caracterizado pelo ponto de fusão e fragmentos de MS/MS. Um delineamento fatorial completo 23 foi utilizado para avaliar os efeitos da concentração de [BMIM][Cl], tempo de extração e temperatura no teor fenólico total (TPC) e na atividade antioxidante (DPPH) dos extratos obtidos. Uma concentração de LI de 2,5 mol L-1, tempo de extração de 10 minutos a 35 °C apresentou a maior quantidade de TPC (4,01 mg g-1 de ácido gálico). A maior AA (8,77 mg g-1 de ácido ascórbico) foi alcançada usando uma concentração de LI de 2,5 mol L-1, tempo de extração de 40 minutos a 55 °C. Esses resultados foram superiores aos obtidos pela extração com metanol (1,58 mg g-1 de ácido gálico e 3,65 mg g-1 de ácido ascórbico, respectivamente). Os resultados indicaram que o método inovador de extração usando ILUAE foi rápido, direto e eficaz para recuperar compostos bioativos valiosos do coproduto de goiaba vermelha sem o uso de solventes orgânicos.
Referências
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011 DOI: https://doi.org/10.1016/j.crfs.2021.03.011
Almulaiky, Y., Zeyadi, M., Saleh, R., Baothman, O., Al-shawafi, W., & Al-Talhi, H. (2018). Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16, 90–97. https://doi.org/10.1016/j.bcab.2018.07.025 DOI: https://doi.org/10.1016/j.bcab.2018.07.025
Belwal, T., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Pande, V. (2016). Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 207, 115–124. https://doi.org/10.1016/j.foodchem.2016.03.081 DOI: https://doi.org/10.1016/j.foodchem.2016.03.081
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Brazilian Institute for Geography and Statistics. (2019). Municipal Agricultural Production - PAM. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=resultados
Camelo, L. C. L., Lana, G. R. Q., Santos, M. J. B. dos, Camelo, Y. A. R. P., Marinho, A. L., Rabello, C. B.-V., Camelo, L. C. L., Lana, G. R. Q., Santos, M. J. B. dos, Camelo, Y. A. R. P., Marinho, A. L., & Rabello, C. B.-V. (2015). INCLUSÃO DE FARELO DE GOIABA NA DIETA DE CODORNAS EUROPÉIAS. Ciência Animal Brasileira, 16(3), 343–349. https://doi.org/10.1590/1089-6891v16i324342 DOI: https://doi.org/10.1590/1089-6891v16i324342
Campoli, S. S., Rojas, M. L., do Amaral, J. E. P. G., Canniatti-Brazaca, S. G., & Augusto, P. E. D. (2018). Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594–601. https://doi.org/10.1016/j.foodchem.2018.06.127 DOI: https://doi.org/10.1016/j.foodchem.2018.06.127
Cao, J., Peng, L.-Q., Du, L.-J., Zhang, Q.-D., & Xu, J.-J. (2017). Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Analytica Chimica Acta, 963, 24–32. https://doi.org/10.1016/j.aca.2017.01.063 DOI: https://doi.org/10.1016/j.aca.2017.01.063
Claus, J., Sommer, F. O., & Kragl, U. (2018). Ionic liquids in biotechnology and beyond. Solid State Ionics, 314, 119–128. https://doi.org/10.1016/j.ssi.2017.11.012 DOI: https://doi.org/10.1016/j.ssi.2017.11.012
Del’Arco, A. P. W. T., & Sylos, C. M. de. (2018). Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava l.) ‘Paluma’ cv. Revista Brasileira de Fruticultura, 40(2). https://doi.org/10.1590/0100-29452018011 DOI: https://doi.org/10.1590/0100-29452018011
Du, F.-Y., Xiao, X.-H., & Li, G.-K. (2007). Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. Journal of Chromatography A, 1140(1–2), 56–62. https://doi.org/10.1016/j.chroma.2006.11.049 DOI: https://doi.org/10.1016/j.chroma.2006.11.049
Du, F.-Y., Xiao, X.-H., & Li, G.-K. (2011). Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomedical Chromatography, 25(4), 472–478. https://doi.org/10.1002/bmc.1470 DOI: https://doi.org/10.1002/bmc.1470
Fang, D., Cheng, J., Gong, K., Shi, Q.-R., Zhou, X.-L., & Liu, Z.-L. (2007). A green and novel procedure for the preparation of ionic liquid. https://doi.org/10.1016/j.jfluchem.2007.09.004 DOI: https://doi.org/10.1002/chin.200821146
Faustino, N., Pinto, P. C. A. G., Passos, M. L. C., & Saraiva, M. L. M. F. S. (2017). Automatic ionic liquid-enhanced membrane microextraction for the determination of melamine in food samples. Food Control, 79, 162–168. https://doi.org/10.1016/j.foodcont.2017.03.040 DOI: https://doi.org/10.1016/j.foodcont.2017.03.040
Ferreira, B. L., Beik, J., Alves, S., Henrique, F., Sauer, E., Chornobaid, C., Bowles, S., & Chaves, E. (2020). EXTRAÇÃO ASSISTIDA POR ULTRASSOM PARA DETERMINAÇÃO DE LIPÍDEOS EM ALIMENTOS: UM EXPERIMENTO DE LABORATÓRIO. Química Nova. https://doi.org/10.21577/0100-4042.20170592 DOI: https://doi.org/10.21577/0100-4042.20170592
Ferreira, B. L., Chaves, E. S., Vialich, J., & Sauer, E. (2014). Extração assistida por ultrassom para determinação de Fe, K e Na em amostras de achocolatado em pó. Brazilian Journal of Food Technology, 17(3), 236–242. https://doi.org/10.1590/1981-6723.1514 DOI: https://doi.org/10.1590/1981-6723.1514
Flores, G., Wu, S.-B., Negrin, A., & Kennelly, E. J. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chemistry, 170, 327–335. https://doi.org/10.1016/j.foodchem.2014.08.076 DOI: https://doi.org/10.1016/j.foodchem.2014.08.076
Goti, A., & Cardona, F. (2013). Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes. In Green Chemical Reactions (Vol. 53, Issue 9). https://doi.org/10.1007/978-1-4020-8457-7_9 DOI: https://doi.org/10.1007/978-1-4020-8457-7_9
Gruz, A. P. G., Sousa, C. G. S. e, Torres, A. G., Freitas, S. P., & Cabral, L. M. C. (2013). Recuperação de compostos bioativos a partir do bagaço de uva. Revista Brasileira de Fruticultura, 35(4), 1147–1157. https://doi.org/10.1590/S0100-29452013000400026 DOI: https://doi.org/10.1590/S0100-29452013000400026
Hassan, C., Rosmani, C., Sulaiman, N., Merian, N., & Emami, D. (2016). Polyphenols Recovery from Tropical Fruits (Pink Guava) Wastes via Ultra-Filtration Membrane Technology Application by Optimum Solvent Selection. In J. Chem. Chem. Eng (Vol. 35, Issue 3). http://websisni.bsn.go.id/index.php?/sni_main/sni/index_simple.
Hwang, J., Park, H., Choi, D. W., Nam, K. T., & Lim, K.-M. (2018). Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models. Toxicology in Vitro, 46, 194–202. https://doi.org/10.1016/j.tiv.2017.09.025 DOI: https://doi.org/10.1016/j.tiv.2017.09.025
Koriem, K. M. M., Arbid, M. S., & Saleh, H. N. (2019). Antidiarrheal and protein conservative activities of Psidium guajava in diarrheal rats. Journal of Integrative Medicine, 17(1), 57–65. https://doi.org/10.1016/j.joim.2018.12.001 DOI: https://doi.org/10.1016/j.joim.2018.12.001
Kou, X., Ke, Y., Wang, X., Rahman, M. R. T., Xie, Y., Chen, S., & Wang, H. (2018). Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger ( Zingiber officinale Roscoe). Food Chemistry, 257, 223–229. https://doi.org/10.1016/j.foodchem.2018.02.125 DOI: https://doi.org/10.1016/j.foodchem.2018.02.125
Lima, R. da S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2019). May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 451–459. https://doi.org/10.1016/j.foodres.2018.10.053 DOI: https://doi.org/10.1016/j.foodres.2018.10.053
Lima, R. da S., Nunes, I. L., & Block, J. M. (2020). Ultrasound-Assisted Extraction for the Recovery of Carotenoids from Guava’s Pulp and Waste Powders. Plant Foods for Human Nutrition, 75(1), 63–69. https://doi.org/10.1007/s11130-019-00784-0 DOI: https://doi.org/10.1007/s11130-019-00784-0
Lou, Z., Wang, H., Zhu, S., Chen, S., Zhang, M., & Wang, Z. (2012). Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Analytica Chimica Acta, 716, 28–33. https://doi.org/10.1016/j.aca.2011.03.012 DOI: https://doi.org/10.1016/j.aca.2011.03.012
Ma, W., Lu, Y., Hu, R., Chen, J., Zhang, Z., & Pan, Y. (2010). Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta, 80(3), 1292–1297. https://doi.org/10.1016/j.talanta.2009.09.027 DOI: https://doi.org/10.1016/j.talanta.2009.09.027
Magiera, S., & Sobik, A. (2017). Ionic liquid-based ultrasound-assisted extraction coupled with liquid chromatography to determine isoflavones in soy foods. Journal of Food Composition and Analysis, 57, 94–101. https://doi.org/10.1016/j.jfca.2016.12.016 DOI: https://doi.org/10.1016/j.jfca.2016.12.016
Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397–C2403. https://doi.org/10.1111/1750-3841.13077 DOI: https://doi.org/10.1111/1750-3841.13077
Martins, N., Barros, L., & Ferreira, I. C. F. R. (2016). In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends in Food Science & Technology, 48, 1–12. https://doi.org/10.1016/j.tifs.2015.11.008 DOI: https://doi.org/10.1016/j.tifs.2015.11.008
Martins, P. L. G., Braga, A. R., & de Rosso, V. V. (2017). Can ionic liquid solvents be applied in the food industry? Trends in Food Science and Technology, 66, 117–124. https://doi.org/10.1016/j.tifs.2017.06.002 DOI: https://doi.org/10.1016/j.tifs.2017.06.002
Martins, P. L. G., & de Rosso, V. V. (2016). Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound-assisted completely solvent-free method. Food Research International, 82, 156–164. https://doi.org/10.1016/j.foodres.2016.01.015 DOI: https://doi.org/10.1016/j.foodres.2016.01.015
McCook-Russell, K. P., Nair, M. G., Facey, P. C., & Bowen-Forbes, C. S. (2012). Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chemistry, 134(2), 1069–1073. https://doi.org/10.1016/j.foodchem.2012.03.018 DOI: https://doi.org/10.1016/j.foodchem.2012.03.018
Milani, L. P. G., Garcia, N. O. S., Morais, M. C., Dias, A. L. S., Oliveira, N. L., & Conceição, E. C. (2018). Extract from byproduct Psidium guajava standardized in ellagic acid: additivation of the in vitro photoprotective efficacy of a cosmetic formulation. Revista Brasileira de Farmacognosia, 28(6), 692–696. https://doi.org/10.1016/j.bjp.2018.08.005 DOI: https://doi.org/10.1016/j.bjp.2018.08.005
Moon, P., Fu, Y., Bai, J., Plotto, A., Crane, J., & Chambers, A. (2018). Assessment of fruit aroma for twenty-seven guava ( Psidium guajava ) accessions through three fruit developmental stages. Scientia Horticulturae, 238, 375–383. https://doi.org/10.1016/j.scienta.2018.04.067 DOI: https://doi.org/10.1016/j.scienta.2018.04.067
Murador, D. C., Braga, A. R. C., Martins, P. L. G., Mercadante, A. Z., & de Rosso, V. V. (2019). Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Research International, 126, 108653. https://doi.org/10.1016/j.foodres.2019.108653 DOI: https://doi.org/10.1016/j.foodres.2019.108653
Narenderan, S. T., Meyyanathan, S. N., & Karri, V. V. S. R. (2019). Experimental design in pesticide extraction methods: A review. Food Chemistry, 289, 384–395. https://doi.org/10.1016/j.foodchem.2019.03.045 DOI: https://doi.org/10.1016/j.foodchem.2019.03.045
Niño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. In South African Journal of Botany (Vol. 111, pp. 161–169). Elsevier. https://doi.org/10.1016/j.sajb.2017.03.016 DOI: https://doi.org/10.1016/j.sajb.2017.03.016
Santos, C. M. dos, Mesquita, L. M. de S., Braga, A. R. C., & Rosso, V. V. de. (2021). Red Propolis as a Source of Antimicrobial Phytochemicals: Extraction Using High-Performance Alternative Solvents. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.659911 DOI: https://doi.org/10.3389/fmicb.2021.659911
Santos, W. N. L. dos, Sauthier, M. C. da S., Santos, A. M. P., Santana, D. de A., Azevedo, R. S. A., & Caldas, J. da C. (2017). Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 583–592. https://doi.org/10.1016/j.microc.2017.04.029 DOI: https://doi.org/10.1016/j.microc.2017.04.029
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018 DOI: https://doi.org/10.1016/j.jff.2015.06.018
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047 DOI: https://doi.org/10.1016/j.jff.2015.01.047
Sheldon, R. (2001). Catalytic reactions in ionic liquids Historical development. https://doi.org/10.1039/b107270f DOI: https://doi.org/10.1039/b107270f
Silva, C., Garcia, V. A. dos S., & Franciscato, L. M. S. do S. (2016). Extração Assistida por Ultrassom de Compostos Bioativos das Cascas de Lichia (Litchi Chinensis Sonn.). Revista Ciências Exatas e Naturais, 18(1), 81–96. https://pdfs.semanticscholar.org/6e96/75267b44bcfce2207214a8df241cfaa8dedd.pdf DOI: https://doi.org/10.5935/RECEN.2016.01.06
Silva, R. W. V. da, Martins, G. M. G., Nascimento, R. A. do, Viana, A. F. da S., Aguiar, F. S. de, & Silva, B. A. da. (2019). Uso da metodologia de superfície de resposta na otimização da extração de compostos fenólicos da casca dos frutos de Hymenaea courbaril L. (Jatobá). Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.08918 DOI: https://doi.org/10.1590/1981-6723.08918
Sousa, M. S. B., Vieira, L. M., & Lima, A. de. (2011). Fenólicos totais e capacidade antioxidante in vitro de resíduos de polpas de frutas tropicais. Brazilian Journal of Food Technology, 14(03), 202–210. https://doi.org/10.4260/BJFT2011140300024 DOI: https://doi.org/10.4260/BJFT2011140300024
Souza, H. A. de, Natale, W., & Rozane, D. E. (2011). Avaliação agronômica da aplicação do resíduo da indústria processadora de goiabas em pomar comercial de goiabeiras. Revista Brasileira de Ciência Do Solo, 35(3), 969–979. https://doi.org/10.1590/S0100-06832011000300031 DOI: https://doi.org/10.1590/S0100-06832011000300031
Teixeira, G. L., Maciel, L. G., Mazzutti, S., Barbi, R. C. T., Ribani, R. H., Ferreira, S. R. S., & Block, J. M. (2021). Sequential green extractions based on supercritical carbon dioxide and pressurized ethanol for the recovery of lipids and phenolics from Pachira aquatica seeds. Journal of Cleaner Production, 306, 127223. https://doi.org/10.1016/j.jclepro.2021.127223 DOI: https://doi.org/10.1016/j.jclepro.2021.127223
Tong, R., Zhang, L., Yang, X., Liu, J., Zhou, P., & Li, J. (2019). Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. Journal of Cleaner Production, 208, 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195 DOI: https://doi.org/10.1016/j.jclepro.2018.10.195
Torres, S., Pandey, A., & Castro, G. R. (2011). Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnology Advances, 29(4), 442–452. https://doi.org/10.1016/j.biotechadv.2011.04.002 DOI: https://doi.org/10.1016/j.biotechadv.2011.04.002
Tuzen, M., Uluozlu, O. D., Mendil, D., Soylak, M., Machado, L. O. R., dos Santos, W. N. L., & Ferreira, S. L. C. (2018). A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chemistry, 245, 380–384. https://doi.org/10.1016/j.foodchem.2017.10.115 DOI: https://doi.org/10.1016/j.foodchem.2017.10.115
Vo Dinh, T., Saravana, P. S., Woo, H. C., & Chun, B. S. (2018). Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology, 196, 287–299. https://doi.org/10.1016/j.seppur.2017.06.009 DOI: https://doi.org/10.1016/j.seppur.2017.06.009
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/jfbc.13394 DOI: https://doi.org/10.1111/jfbc.13394
Zhang, S., Sun, N., He, X., Lu, X., & Zhang, X. (2006). Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 35(4), 1475–1517. https://doi.org/10.1063/1.2204959 DOI: https://doi.org/10.1063/1.2204959
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Bruno Ferreira, Vitória Feilstrecker Bohn, Lissandra Waltrich, Jane Mara Block, Daniel Granato, Itaciara Larroza Nunes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista publica seus artigos em Acesso Aberto sob licença Creative Commons (CC BY 4.0).
Você é livre para:
Compartilhar — copie e redistribua o material em qualquer meio ou formato para qualquer finalidade, inclusive comercial.
Adaptar – remixar, transformar e desenvolver o material para qualquer finalidade, até mesmo comercial.
O licenciante não pode revogar essas liberdades desde que você siga os termos da licença.
Nos seguintes termos:
Atribuição — Você deve dar o devido crédito, fornecer um link para a licença e indicar se foram feitas alterações. Você pode fazê-lo de qualquer maneira razoável, mas não de forma que sugira que o licenciante endossa você ou seu uso.
Sem restrições adicionais — Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas de fazerem qualquer coisa que a licença permita.
Avisos:
Você não precisa cumprir a licença para elementos do material de domínio público ou onde seu uso for permitido por uma exceção ou limitação aplicável.
Nenhuma garantia é dada. A licença pode não conceder todas as permissões necessárias para o uso pretendido. Por exemplo, outros direitos, como publicidade, privacidade ou direitos morais, podem limitar a forma como você utiliza o material.