Scientific production on enzymatic hydrolysis of bovine whey and its bioactive peptides: A bibliometric approach
DOI:
https://doi.org/10.58951/fstoday.2025.004Keywords:
Enzymatic hydrolysis, Bioactive peptides production, Whey protein utilization, Functional food applications, Food and pharmaceutical applicationsAbstract
The increasing interest in the health benefits of whey-derived bioactive peptides highlighted the need for a comprehensive understanding of their production and applications. This study analyzed the global research landscape on the enzymatic hydrolysis of bovine whey and its bioactive peptides from 2004 to 2024. A bibliometric approach was used to identify key themes, trends, and collaborative efforts. Data were collected from 183 documents across 80 sources, and thematic and Multiple Correspondence Analysis (MCA) maps were employed to categorize research themes and reveal central clusters. The analysis demonstrated a 12.74% annual growth in publications, with significant contributions from countries such as China, Canada, India, and Brazil. Key journals like “LWT-Food Science and Technology” and “Food Chemistry” were identified as leading sources. The functional properties of whey-derived peptides, including antioxidant, antihypertensive, antidiabetic, antithrombotic, and hypocholesterolemic effects, were highlighted, underscoring their potential applications in the food and pharmaceutical industries. The collaborative nature of the research was evident, with an average of 4.92 co-authors per paper and international collaborations accounting for 26.78% of the documents. The findings emphasized the therapeutic potential of bioactive peptides and the need for continued exploration of novel technologies and applications. It was concluded that the enzymatic hydrolysis of whey proteins remains dynamic and interdisciplinary, with promising avenues for future research and development in enhancing health outcomes and innovative food solutions.
References
Acquah, C., Stefano, E. D., & Udenigwe, C. C. (2018). Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives, 4, 88-98. https://doi.org/10.31665/JFB.2018.4164
Al-Shamsi, K. A., Mudgil, P., Hassan, H. M., & Maqsood, S. (2018). Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and food model systems. Journal of Dairy Science, 101(1), 47–60. https://doi.org/10.3168/jds.2017-13194
Aponte Colmenares, A. P., Prieto Suárez, G. A., Castellanos Báez, Y. T., Muvdi Nova, C. D. J., & Yurievich Sakharov, I. (2023). Review. Aplicaciones del lactosuero y sus derivados proteínicos. Ciencia En Desarrollo, 14(2), 139–155. https://doi.org/10.19053/01217488.v14.n2.2023.15002
Barrero, J. A., Cruz, C. M., Casallas, J., & Vásquez, J. S. (2021). Evaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis). TecnoLógicas, 24(50), e1731. https://doi.org/10.22430/22565337.1731
Carrera-Alvarado, G., Toldrá, F., & Mora, L. (2023). Potential of dry-cured ham bones as a sustainable source to obtain antioxidant and DPP-IV inhibitory extracts. Antioxidants, 12(6), 1151. https://doi.org/10.3390/antiox12061151
Chaudhary, S., Ali, Z., & Mahfouz, M. (2024). Molecular farming for sustainable production of clinical‐grade antimicrobial peptides. Plant Biotechnology Journal, 22(8), 2282–2300. https://doi.org/10.1111/pbi.14344
Cheng, S., Yuan, L., Li-Gao, R., Chen, S., Li, H., & Du, M. (2024). Nutrition and cardiovascular disease: The Potential role of marine bioactive proteins and peptides in thrombosis prevention. Journal of Agricultural and Food Chemistry, 72(13), 6815–6832. https://doi.org/10.1021/acs.jafc.3c08850
Costa, B. de A. M. da, Porto, A. L. F., Oliveira, V. de M., & Porto, T. S. (2023). Bioactive collagen peptides: bibliometric approach and market trends for aquatic sources. Food Science Today, 2(1). https://doi.org/10.58951/fstoday.2023.17
Costa, E.L., Gontijo, J.A.R., & Netto, F. M. (2007). Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 17(6), 632–640. https://doi.org/10.1016/j.idairyj.2006.09.003
Cotabarren, J., Rosso, A. M., Tellechea, M., García-Pardo, J., Rivera, J. L., Obregón, W. D., & Parisi, M. G. (2019). Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry, 274, 848–856. https://doi.org/10.1016/j.foodchem.2018.09.061
Dave, L. A., Montoya, C. A., Rutherfurd, S. M., & Moughan, P. J. (2014). Gastrointestinal endogenous proteins as a source of bioactive peptides—An in silico study. PLoS ONE, 9(6), e98922. https://doi.org/10.1371/journal.pone.0098922
Devita, L., Lioe, H. N., Nurilmala, M., & Suhartono, M. T. (2021). The bioactivity prediction of peptides from tuna skin collagen using integrated method combining in vitro and in silico. Foods, 10(11), 2739. https://doi.org/10.3390/foods10112739
Duffuler, P., Bhullar, K. S., De Campos Zani, S. C., & Wu, J. (2022). Bioactive peptides: from basic research to clinical trials and commercialization. Journal of Agricultural and Food Chemistry, 70(12), 3585–3595. https://doi.org/10.1021/acs.jafc.1c06289
Eberhardt, A., López, E. C., Marino, F., Mammarella, E. J., Manzo, R. M., & Sihufe, G. A. (2021). Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. International Journal of Dairy Technology, 74(3), 489–504. https://doi.org/10.1111/1471-0307.12795
Ferrazzano, L., Catani, M., Cavazzini, A., Martelli, G., Corbisiero, D., Cantelmi, P., Fantoni, T., Mattellone, A., De Luca, C., Felletti, S., Cabri, W., & Tolomelli, A. (2022). Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chemistry, 24(3), 975–1020. https://doi.org/10.1039/D1GC04387K
Foh, M. B. K., Amadou, I., Foh, B. M., Kamara, M. T., & Xia, W. (2010). Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International Journal of Molecular Sciences, 11(4), 1851-1869. https://doi.org/10.3390/ijms11041851
Garcia-Castro, A., Roman-Gutierrez, A. D., Guzmán-Ortiz, F. A., Castañeda-Ovando, A., & Cariño-Cortés, R. (2022). Compuestos bioactivos presentes en alimentos con actividad antihipertensiva y su efecto en COVID-19. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 9(18), 1–6. https://doi.org/10.29057/icbi.v9i18.8098
García-Curiel, L., Pérez-Flores, J. G., González-Olivares, L. G., Guerrero-Solano, J. A., Contreras-López, E., Pérez-Escalante, E., Portillo-Torres, L. A., & Sebastián-Nicolás, J. L. (2024). Probiotics and Metabolic Syndrome: A bibliometric analysis and overview of dietary interventions. In Weight Loss—A Multidisciplinary Perspective. IntechOpen. https://doi.org/10.5772/intechopen.1004605
Guedes, D. M., Silva, L. F. D., & Oliveira, V. C. D. (2023). Ingeniería: Innovación, ciencia y tecnología 3 (D. M. Guedes, L. F. D. Silva & V. C. D. Olivera (eds.); 1st ed.). Atena Editora. Ponta Grossa, Brazil. https://doi.org/10.22533/at.ed.101232012
Han, R., Hernández Álvarez, A. J., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates – Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4, 141–149. https://doi.org/10.1016/j.crfs.2021.03.001
Helal, A., Pierri, S., Tagliazucchi, D., & Solieri, L. (2023). Effect of fermentation with Streptococcus thermophilus strains on in vitro gastro-intestinal digestion of whey protein concentrates. Microorganisms, 11(7), 1742. https://doi.org/10.3390/microorganisms11071742
Herrera-Ponce, A. L., Alarcón-Rojo, A. D., Salmeron, I., & Rodríguez-Figueroa, J. C. (2019). Efectos fisiológicos de los péptidos bioactivos derivados de las proteínas del lactosuero en la salud: Una revisión. Revista Chilena de Nutrición, 46(2), 205–214. https://doi.org/10.4067/s0717-75182019000200205
Isidro-Llobet, A., Kenworthy, M. N., Mukherjee, S., Kopach, M. E., Wegner, K., Gallou, F., Smith, A. G., & Roschangar, F. (2019). Sustainability challenges in peptide synthesis and purification: From R&D to production. The Journal of Organic Chemistry, 84(8), 4615–4628. https://doi.org/10.1021/acs.joc.8b03001
Islas-Martínez, D., Ávila-Vargas, Y. N., Rodríguez-Serrano, G. M., González-Olivares, L. G., Pérez-Flores, J. G., Contreras-López, E., Olloqui, E. J., & Pérez-Escalante, E. (2023). Multi-bioactive potential of a rye protein isolate hydrolysate by enzymatic processes. Biology Life Sciences Forum, 26(1), 38. https://doi.org/10.3390/Foods2023-15037
Iwaniak, A., Darewicz, M., & Minkiewicz, P. (2018). Peptides derived from foods as supportive diet components in the prevention of metabolic syndrome. Comprehensive Reviews in Food Science and Food Safety, 17(1), 63–81. https://doi.org/10.1111/1541-4337.12321
Jadhav, S., Seufert, W., Lechner, C., & Schönleber, R. (2021). Bachem – insights into innovative and sustainable peptide chemistry and technology by the leading independent manufacturer of TIDES. CHIMIA, 75(6), 476. https://doi.org/10.2533/chimia.2021.476
Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E., & Zieliński, D. (2020). Current trends of bioactive peptides—New sources and therapeutic effect. Foods, 9(7), 846. https://doi.org/10.3390/foods9070846
Koenig, S. G., Leahy, D. K., & Wells, A. S. (2018). Evaluating the impact of a decade of funding from the Green Chemistry Institute Pharmaceutical Roundtable. Organic Process Research & Development, 22(10), 1344–1359. https://doi.org/10.1021/acs.oprd.8b00237
Lin, K., Zhang, L. W., Han, X., & Cheng, D. Y. (2017). Novel angiotensin I-converting enzyme inhibitory peptides from protease hydrolysates of Qula casein: Quantitative structure-activity relationship modeling and molecular docking study. Journal of Functional Foods, 32, 266-277.
Lübeck, M., & Lübeck, P. S. (2022). Fungal cell factories for efficient and sustainable production of proteins and peptides. Microorganisms, 10(4), 753. https://doi.org/10.3390/microorganisms10040753
Manzanares, P., Gandía, M., Garrigues, S., & Marcos, J. F. (2019). Improving health-promoting effects of food-derived bioactive peptides through rational design and oral delivery strategies. Nutrients, 11(10), 2545. https://doi.org/10.3390/nu11102545
Mendoza-Jiménez, Y. L., Eusebio-Moreno, J. C., Álvarez-García, R., Abreu-Corona, A., Vargas-Hernández, G., Alejandro Téllez-Jurado, A., & Tovar-Jiménez, X. (2018). Actividad antioxidante de los hidrolizados proteicos del frijol común (Phaseolus vulgaris) cv negro primavera-28 y flor de durazno. Biotecnia, 20(2), 25–30. https://doi.org/10.18633/biotecnia.v20i2.594
Mercier, A., Gauthier, S. F., & Fliss, I. (2004). Immunomodulating effects of whey proteins and their enzymatic digests. International Dairy Journal, 14(3), 175–183. https://doi.org/10.1016/j.idairyj.2003.08.003
Mohammadian, M., & Madadlou, A. (2016). Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocolloids, 52, 221–230. https://doi.org/10.1016/j.foodhyd.2015.06.022
Mora, L., & Toldrá, F. (2023). Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science, 49, 100973. https://doi.org/10.1016/j.cofs.2022.100973
Motta-Correa, Y., & Mosquera M., W. J. (2022). Aprovechamiento del lactosuero y sus componentes como materia prima en la industria de alimentos.@limentech, Ciencia y Tecnología Alimentaria, 13(1), 81-91. https://doi.org/10.24054/limentech.v13i1.1599
Muñoz, J., Cabrera, C., Alcívar, A., Castro, M., & Zambrano, E. (2019). Use of whey in the development of a milk beverage flavored with chocolate powder: Sensory and bromatological properties. Agroindustrial Science, 9(2), 199–204. https://doi.org/10.17268/agroind.sci.2019.02.13
Murtaza, M. A., Irfan, S., Hafiz, I., Ranjha, M. M. A. N., Rahaman, A., Murtaza, M. S., Ibrahim, S. A., & Siddiqui, S. A. (2022). Conventional and novel technologies in the production of dairy bioactive peptides. Frontiers in Nutrition, 9, 780151. https://doi.org/10.3389/fnut.2022.780151
Pandey, K., & Agrawal, M. (2024). Optimizing enzymatic hydrolysis pathways: a comprehensive study on enhancing cellulose bioconversion efficiency for industrial applications. International Journal for Research in Applied Science and Engineering Technology, 12(1), 1003–1008. https://doi.org/10.22214/ijraset.2024.58101
Pérez-Escalante, E., Padilla-Zúñiga, S. A., Contreras-López, E., Sebastián-Nicolás, J. L., Pérez-Flores, J. G., Olloqui, E. J., & González-Olivares, L. G. (2022). Antioxidant and antihypertensive properties from muscle hydrolysates of farm rainbow trout. Biology Life Sciences Forum, 18(1), 55. https://doi.org/10.3390/Foods2022-12991
Pérez-Flores, J. G., García-Curiel, L., Pérez-Escalante, E., Contreras-López, E., & Olloqui, E. J. (2024). Arabinoxylans matrixes as a potential material for drug delivery systems development—A bibliometric analysis and literature review. Heliyon, 10(3), e25445. https://doi.org/10.1016/j.heliyon.2024.e25445
Piccolomini, A., Kubow, S., & Lands, L. (2015). Clinical potential of hyperbaric pressure-treated whey protein. Healthcare, 3(2), 452–465. https://doi.org/10.3390/healthcare3020452
Pratama, I. S., Putra, Y., Pangestuti, R., Kim, S.-K., & Siahaan, E. A. (2022). Bioactive peptides-derived from marine by-products: Development, health benefits and potential application in biomedicine. Fisheries and Aquatic Sciences, 25(7), 357–379. https://doi.org/10.47853/FAS.2022.e33
Pratap-Singh, A., Guo, Y., Baldelli, A., & Singh, A. (2023). Concept for a unidirectional release mucoadhesive buccal tablet for oral delivery of antidiabetic peptide drugs such as insulin, glucagon-like peptide 1 (GLP-1), and their analogs. Pharmaceutics, 15(9), 2265. https://doi.org/10.3390/pharmaceutics15092265
Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., & Wang, F. (2023). Ultrasound-assisted enzymatic protein hydrolysis in food processing: mechanism and parameters. Foods, 12(21), 4027. https://doi.org/10.3390/foods12214027
Rivera-Rojas, H., Tafur-Pereda, H., Pisco-Caldas, J., Crispín Sánchez, F., & Porturas Olaechea, R. (2024). Optimization of a drink with cacao Theobroma cacao L. CCN51 exudate and lactic serum using surface response. Agroindustrial Science, 13(3), 119–126. https://doi.org/10.17268/agroind.sci.2023.03.01
Rodriguez, H. (2020). Red Iberoamericana para el desarrollo de péptidos terapéuticos, REDIPEPT. Bionatura, 5(3), 1177–1180. https://doi.org/10.21931/RB/2020.05.03.1
Román, J., & Linares, G. (2011). Effect of agar concentration and relation immobilized cells / substrate in the hydrolysis of deproteinized whey in a fluidized bed bioreactor Kluyveromyces sp. Agroindustrial Science, 2, 56–63. https://doi.org/10.17268/agroind.science.2011.02.02
Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F., & Stanton, C. (2011). Bioactive peptides from muscle sources: meat and fish. Nutrients, 3(9), 765–791. https://doi.org/10.3390/nu3090765
Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertlé, T., Chobert, J.-M., Razavi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., & Niasari-Naslaji, A. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58(6), 3297–3302. https://doi.org/10.1021/jf9033283
Salazar-Manzanares, M., Márquez-Reyes, J., Rodríguez-Romero, B., Méndez-Zamora, G., Luna-Maldonado, A., & Treviño-Garza, M. (2023). Aprovechamiento de suero de leche para producción de celulosa microbiana. Investigación y Desarrollo En Ciencia y Tecnología de Alimentos, 8(1), 339–348. https://doi.org/10.29105/idcyta.v8i1.46
Samtiya, M., Samtiya, S., Badgujar, P. C., Puniya, A. K., Dhewa, T., & Aluko, R. E. (2022). Health-promoting and therapeutic attributes of milk-derived bioactive peptides. Nutrients, 14(15), 3001. https://doi.org/10.3390/nu14153001
Solís Oba, A., Teniza García, O., Solís-Oba, M. M., & Martínez-Cásares, R. M. (2023). Propuesta para el aprovechamiento industrial del lactosuero. Revista Bio Ciencias, 10, e1392. https://doi.org/10.15741/revbio.10.e1392
Tagliazucchi, D., Martini, S., & Solieri, L. (2019). Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation, 5(4), 96. https://doi.org/10.3390/fermentation5040096
Tavares, T., Contreras, M. D. M., Amorim, M., Pintado, M., Recio, I., & Malcata, F. X. (2011). Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides, 32(5), 1013–1019. https://doi.org/10.1016/j.peptides.2011.02.005
Tolentino-Barroso, D. A., González-Olivares, L. G., Pérez-Flores, J. G., Contreras-López, E., Olvera-Rosales, L. B., Escobar-Ramírez, M. C., Olloqui, E. J., & Pérez-Escalante, E. (2023). Bovine whey hydrolysis with pancreatin produces a functional ingredient for developing antihypertensive beverages. Biology Life Sciences Forum, 26(1), 63. https://doi.org/10.3390/Foods2023-15020
Williams Zambrano, M. B., & Dueñas Rivadeneira, A. A. (2021). Alternativas para el aprovechamiento del lactosuero: Antecedentes investigativos y usos tradicionales. La Técnica: Revista de Las Agrociencias, 11(2), 39-50. https://doi.org/10.33936/la_tecnica.v0i26.3490
Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. International Journal of Food Science & Technology, 54(6), 1909–1919. https://doi.org/10.1111/ijfs.14090
Yu, Z., Yin, Y., Zhao, W., Wang, F., Yu, Y., Liu, B., Liu, J., & Chen, F. (2011). Characterization of ACE‐inhibitory peptide associated with antioxidant and anticoagulation properties. Journal of Food Science, 76(8). https://doi.org/10.1111/j.1750-3841.2011.02367.x
Zheng, Z., Li, J., Li, J., Sun, H., & Liu, Y. (2019). Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocolloids, 97, 105222. https://doi.org/10.1016/j.foodhyd.2019.105222

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Itzury Reyes-Ramírez, Jesús Guadalupe Pérez-Flores , Laura García-Curiel , Luis Guillermo González-Olivares , Elizabeth Contreras-López , Laura Berenice Olvera-Rosales , Emmanuel Pérez-Escalante

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.