Development and application on strawberries of edible coatings based on yam and corn starch added with Rio Grande cherry

Development and application on strawberries of edible coatings based on yam and corn starch added with Rio Grande cherry

Authors

DOI:

https://doi.org/10.58951/fstoday.v1i1.9

Keywords:

Shelf-life, bioactive compounds, antioxidant activity, coating, complex coacervation, biofilms

Abstract

This work aimed to evaluate the properties of biofilms based on corn and yam starch incorporated with Rio Grande cherry (Eugenia involucrata DC) and its encapsulates and use them as a coating on strawberries. The extraction of phenolic compounds from the Rio Grande cherry was optimized, and total flavonoids, antioxidant, and antimicrobial activity were analyzed for the best point. Five compositions of the film-forming solution based on yam and corn starch were evaluated and analyzed for thickness, opacity, moisture content, solubility, antioxidant activity and antimicrobial activity. In addition, antifungal analyses, water loss and color change were performed on the strawberries with and without coating. The cherry extract had a total phenolic content of 526.85 mg EAG 100 g−1 and high antioxidant activity (16.99 μM Trolox g−1 in ABTS; 31.71 mM ferrous sulfate g−1 in FRAP; 94.96% in b-carotene assay), as well as inhibition of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae microorganisms. Adding 2% of starch and 20% of plasticizer in relation to the starch had the best overall results. Films with 0.5% fruit content had greater antioxidant activity than those with 0.03% encapsulate. Film thickness increased when encapsulated agents or fruit were incorporated, but opacity decreased. The solubility of the films changed from 0.34% for corn starch to 0.30% for encapsulate and 0.37% for fruit; yam starch films were completely soluble. Strawberries with yam starch film had the lowest water loss. Films without plasticizers showed colony formation on the seventh day of analysis. Thus, it is suggested that incorporating Rio Grande cherry fruit and its encapsulates in edible toppings could be feasible.

References

Assis, O. B. G., & Leoni, A. M. (2003). Filmes comestíveis de quitosana. Revista Biotecnologia Ciência e Desenvolvimento, 30, 33-38.

Camlofski, A. M. O. (2008). Caracterização do fruto de cerejeira (Eugenia involucrata DC) visando seu aproveitamento tecnológico. (Master dissertation). Universidade Estadual de Ponta Grossa. Ponta Grossa, Brazil.

Cheng, J., Wang, H., Kang, S., Xia, L., Jiang, S., Chen, M., & Jiang, S. (2019). An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids, 96, 546-554. https://doi.org/10.1016/j.foodhyd.2019.06.007. DOI: https://doi.org/10.1016/j.foodhyd.2019.06.007

Cipriani, A., Sousa, A. L., Tenfen, A., Siebert, D. A., Gasper, A. L., Vitali, L., Micke, G. A., & Alberton, M. B. (2022). Phenolic compounds of Eugenia involucrata (Myrtaceae) extracts and associated antioxidant and inhibitory effects on acetylcholinesterase and α-glucosidase. Natural Product Research, 36(4), 1134-1137. https://doi.org/10.1080/14786419.2020.1855640. DOI: https://doi.org/10.1080/14786419.2020.1855640

Corradini, E., Teixeira, E. M., Agnelli, J. A. M., & Mattoso, L. H. C. (2007). Amido Termoplástico. EMBRAPA. São Carlos, Brazil.

Daiuto, E., Cereda, M., Sarmento, S., & Vilpoux, O. (2005). Effects of extraction methods on yam (Dioscorea alata) starch characteristics. Starch/Stärk, 57. https://doi.org/10.1002/star.200400324. DOI: https://doi.org/10.1002/star.200400324

Della Antonia, B. (2002). Qualidade pós-colheita de cereja-do-rio-grande (Eugenia involucrata DC.): caracterização de acessos e estádios de maturação. (Master dissertation). Universidade de São Paulo. Piracicaba¬, Brazil.

Durango-Villadiego, A. M., Ferreira-Soares, N. D. F., de Andrade, N. J., Puschmann, R., Rodrigues-Minim, V. P., & Cruz, R. (2005). Filmes e revestimentos comestíveis na conservação de produtos alimentícios. Revista Ceres, 52(300).

Fagundes, G. R., & Yamanishi, O. K. (2001). Características físicas e químicas de frutos de mamoeiro do grupo ‘Solo’ comercializados em 4 estabelecimentos de Brasília–DF. Revista Brasileira de Fruticultura, 23(3), 541-545. http://dx.doi.org/10.1590/0100-29452001000300018. DOI: https://doi.org/10.1590/S0100-29452001000300018

Fakhouri, F. M., Martelli, S. M., Bertan, L. C., Yamashita, F., Mei, L., H. I., & Queiroz, F. P. C. (2012). Edible films made from blends of manioc starch and gelatin – Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT, 49(1), 149-154. https://doi.org/10.1016/j.lwt.2012.04.017. DOI: https://doi.org/10.1016/j.lwt.2012.04.017

Falcão, L. S., Coelho, D. B., Veggi, P. C., Campelo, P. H., Albuquerque, P. M., & de Moraes, Am A. (2022). Starch as a matrix for incorporation and release of bioactive compounds: fundamentals and applications. Polymers, 14(12) 2361. https://doi.org/10.3390/polym14122361. DOI: https://doi.org/10.3390/polym14122361

Farias, M. G., Fakhouri, F. M., Carvalho, C. W. P., & Ascheri, J. L. R. (2012). Caracterização físico-química de filmes comestíveis de amido adicionado de acerola (Malphigia emarginata D. C.). Química Nova, 35(3), 546-552. https://doi.org/10.1590/S0100-40422012000300020. DOI: https://doi.org/10.1590/S0100-40422012000300020

Françoso, I. L. T., Couto, M. A. L., Canniatti-Brazaca, S. G., Arthur, V. (2008). Alterações físico-químicas em morangos (Fragaria anassa Duch.) irradiados e armazenados. Food Science and Technology, 28(3), 614-619. https://doi.org/10.1590/S0101-20612008000300017. DOI: https://doi.org/10.1590/S0101-20612008000300017

Girardelo, J. R., Munari, E. L., Dallorsoleta, J. C. S., Cechinel, G., Goetten, A. L. F., Sales, L. R., Reginatto, F. H., Chaves, V. C., Smaniotto, F. A., Somacal, S., Emanuelli, T., Benech, J. C., Soldi, C., Winter, E., & Conterato, G. M. M. (2020). Bioactive compounds, antioxidant capacity and antitumoral activity of ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Food Research International, 137, 109615. https://doi.org/10.1016/j.foodres.2020.109615. DOI: https://doi.org/10.1016/j.foodres.2020.109615

Hoffmann, F., & Siguel, F. (2018). Produção de filmes biodegradáveis a base de lignina, ágar e nanocelulose. (Undergraduate final course). Universidade Tecnológica Federal do Paraná. Ponta Grossa, Brazil.

Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M., & De Alencar, S. M. (2016). Antioxidant and anti-inflamatory activities of unexplored Brazilian native fruits. PloS One, 11(4), e0152974. https://doi.org/10.1371/journal.pone.0152974. DOI: https://doi.org/10.1371/journal.pone.0152974

Instituto Adolfo Lutz. (2008). Normas analíticas do instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. 1. Digital. Instituto Adolfo Lutz São Paulo, Brazil.

Kalaycıoğlu, Z., Torlak, E., Akın-Evingür, G., Özen, I., & Erim, F. B. (2017). Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. International Journal of Biological Macromolecules, 101, 882-888. https://doi.org/10.1016/j.ijbiomac.2017.03.174. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.174

Kluge, R. A., Nachtigal, J. C., Fachinello, J. C., & Bilhalva, A. B. (2002). Fisiologia e manejo pós-colheita de frutas de clima temperado. (2nd ed) Livraria e Editora Rural. Campinas, Brazil.

Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., Gaikwad, K. K. (2021). Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packanging: Preparation, characterization and antioxidant activity. Interntional Journal of Biological Macromolecules, 187, 223-231. https://doi.org/10.1016/j.ijbiomac.2021.07.1736. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.136

Mali. S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydrate Polymers, 56 (2), 129-135. https://doi.org/10.1016/j.carbpol.2004.01.004. DOI: https://doi.org/10.1016/j.carbpol.2004.01.004

Mali. S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19 (1), 157-164. https://doi.org/10.1016/j.foodhydl.2004.05.002. DOI: https://doi.org/10.1016/j.foodhyd.2004.05.002

Marques, D. F., Gonçalves, A. C., Anjos, M. C. dos, Faskomy, T. L., Miranda, A. M. de, Barboza, H. T. G., Fonseca, M. J. O., & Soares, A. G. (2011). Características físicas e químicas de morango orgânico ‘Camino real’ colhido em dois estádios de maturação. In: III Simpósio Brasileiro de Pós-Colheita – SPC, 207-210.

Narvaez-Gómez, G., Figueroa-Flórez, J., Salcedo-Mendoza, J., Pérez_cervera, C., & Andrade-Pizarro, R. (2021). Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films. Heliyon, 7(4), e06644. https://doi.org/10.1016/j.heliyon.2021.e06644. DOI: https://doi.org/10.1016/j.heliyon.2021.e06644

Nicácio, A. E., Rotta, E. M., Boeing, J. S., Barizão, É. O., Kimura, E., Visatainer, J. V., & Maldaner, L. (2017). Antioxidant activity and determination of phenolic compounds from Eugenia involucrata DC. Fruits by UHPLC-MS/MS. Food Anal Methods, 10(8), 2718-2728. https://doi.org/10.1007/s12161-017-0840-3. DOI: https://doi.org/10.1007/s12161-017-0840-3

Nori, M. P., Favaro-Trindade, C. S., Alencar, S. M., Thomazini, M., Baliero, J. C. C., & Castillo, C. J. C. (2011). Microencapsulation of propolis extract by complex coacervation. LWT – Food Science and Technology, 44, 429-435. https://doi.org/10.1016/j.lwt.2012.09.010. DOI: https://doi.org/10.1016/j.lwt.2010.09.010

Ortrosky, E. A., Mizumoto, M. K., Lima, M. E. L., Kaneko, T. M., Nishikawa, S. O., &Freitas, B. R. (2008). Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais, Revista Brasileira de Farmacognosia, 18(2). https://doi.org/10.1590/S0102-695X2008000200026. DOI: https://doi.org/10.1590/S0102-695X2008000200026

Rajapaksha, S. W., & Shimizu, N. (2021). Development and characterization of functional starch-based films incorporating free or microencapsulated spent black tea extract. Molecules, 26(13), 3898. https://doi.org/10.3390/molecules26133898. DOI: https://doi.org/10.3390/molecules26133898

Rufino, M. do S. M., Alves, R. E., Brito. E. S. de, Morais, S. M. de, Sampaio, C. de G., Pérez-Jiménes, J., & Saura-Calixto, F. D. (2006a). Metodologia científica: determinação da atividade antioxidante total em frutas no sistema betacaroteno/ácido linoleico. Embrapa Agroindústria Tropical. Fortaleza, Brazil.

Rufino, M. do S. M., Alves, R. E., Brito. E. S. de, Morais, S. M. de, Sampaio, C. de G., Pérez-Jiménes, J., & Saura-Calixto, F. D. (2006b). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Embrapa Agroindústria Tropical. Fortaleza, Brazil.

Rufino, M. do S. M., Alves, R. E., Brito. E. S. de, Morais, S. M. de, Sampaio, C. de G., Pérez-Jiménes, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS·+. Embrapa Agroindústria Tropical. Fortaleza, Brazil.

Santos, A. E. O., Assis, J. S., Berbert, P. A., Santos, O. O., Batista, P. F., & Gravina, G. A. (2011). Influência de biofilmes de fécula de mandioca e amido de milho na qualidade pós-colheita de mangas ‘Tommy Atkins’. Revista Brasileira de Ciências Agrárias, 6(3), 508-513. https://doi.org/10.5039/agraria.v6i3a755. DOI: https://doi.org/10.5039/agraria.v6i3a755

Siqueira, H. H., Vilas Boas, B. M., Silva, J. D., Nunes, E. E., Lima, L., C., O., & Santana, M. T. A. (2009). Armazenamento de morango sob atmosfera modificada e refrigeração.Ciencia Agrotecnologica, 33(esp), 1712-1715. https://doi.org/10.1590/S1413-7054200900070002. DOI: https://doi.org/10.1590/S1413-70542009000700002

Sousa, M. S. B., Vieira, L. M., & Lima, A. (2011). Fenólicos totais e capacidade antioxidante in vitro de resíduos de polpas de frutas tropicais. Brazilian Journal of Food Technology, 14(3), 202-210. https://doi.org/ 10.4260/BJFT2011140300024. DOI: https://doi.org/10.4260/BJFT2011140300024

Swain, T.; & Hills, W. E. (1959). The phenolic constituents of Prunus domestica. I quantitative analysis of phenolics constituents. Journal of the Science of Food and Agriculture, 19(1), 63-68. http://dx.doi.org/10.1002/ jsfa.2740100110. DOI: https://doi.org/10.1002/jsfa.2740100110

Vicentini, N. M., Castro, T. M. R., & Cereda, M. P. (1999). Influência de películas de fécula de mandioca na qualidade pós-colheita de frutos de pimentão (Capsicum annuum L.). Food Science and Technology, 19(1). https://doi.org/10.1590/S0101-20611999000100023. DOI: https://doi.org/10.1590/S0101-20611999000100023

Weber, F. H., Collares-Queiroz, F. P., & Chang, Y. K. (2009). Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose. Food Science and Technology, 29(4), 748-753. https://doi.org/10.1590/S0101-20612009000400008. DOI: https://doi.org/10.1590/S0101-20612009000400008

Whitt, S. R., Wilson, L. M., Tenaillon, M. I., Gaut, B. S., & Buckler, E. S. (2002). Genetic diversity and selection in the maize starch pathway. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12959-12962. https://doi.org/10.1073/pnas.202476999. DOI: https://doi.org/10.1073/pnas.202476999

Woisky, R. G., & Salatino, A. (1998). Analysis of propolis: some parameters and procedure for chemical quality control. Journal of Apicultural Research, 37(2), 99-105. https://doi.org/10.1080/00218839.1998.11100961. DOI: https://doi.org/10.1080/00218839.1998.11100961

Downloads

Published

2023-01-24

How to Cite

Alexandre, L. A., & Zuge, L. C. B. (2023). Development and application on strawberries of edible coatings based on yam and corn starch added with Rio Grande cherry. Food Science Today, 1(1). https://doi.org/10.58951/fstoday.v1i1.9

Issue

Section

Research Article
Loading...