Whey as a functional ingredient in the food industry: a bibliometric study on its potential and innovation
DOI:
https://doi.org/10.58951/fstoday.2025.007Keywords:
Bioactive Peptides, Encapsulation Technologies, Anaerobic Digestion, Protein Hydrolysates, Circular BioeconomyAbstract
Whey, a by-product of the dairy industry, poses significant environmental challenges due to its high organic load when improperly disposed of. This study aimed to analyze the scientific production of whey utilization in the food industry through bibliometric indicators and knowledge mapping to identify trends, emerging applications, innovations, and gaps in the literature. A bibliometric analysis was conducted using the Web of Science® database, with data processed via the Bibliometrix package in R. The results revealed a sustained growth in scientific output from 2004 to 2024, with an annual growth rate of 15.82%, highlighting China, the USA, and Brazil as leading contributors. Key research areas include whey’s functional properties, applications in encapsulation technologies, emulsion stability, and bioactive peptide production with antioxidant, antimicrobial, and antihypertensive properties. Additionally, whey’s role in sustainability is underscored by its potential in biogas and biopolymer production and its applications in human and animal nutrition, aligning with circular economy principles. The study concludes that whey’s versatility as a functional ingredient and its potential in sustainable applications drive research growth. Future investigations should focus on optimizing biotechnological processes to enhance whey’s functionality, reduce environmental impact, and explore its nutraceutical potential, mainly through clinical studies validating the health benefits of bioactive peptides derived from whey.
References
Abitayeva, G., Bissenova, G., Mussabayeva, B., Naimanov, Y., Тultabayeva, Т., & Sarmurzina, Z. (2023). Development, quality and safety evaluation of a probiotic whey beverage. Functional Foods in Health and Disease, 13(7), 347. https://doi.org/10.31989/ffhd.v13i7.1121
Ahmadi, M., Pet, I., Stef, L., Dumitrescu, G., Nicula, M., Smuleac, L.-I., Pascalau, R., & Dronca, D. (2020). Reverse Osmosis of Whey - Valuable Biocomponent of Feed and Food. Revista de Chimie, 70(12), 4482–4487. https://doi.org/10.37358/RC.19.12.7780
Almeida, M. P. G. de, Mockaitis, G., & Weissbrodt, D. G. (2023). Got Whey? Sustainability Endpoints for the Dairy Industry through Resource Biorecovery. Fermentation, 9(10), 897. https://doi.org/10.3390/fermentation9100897
Alves, A. T. S. e, Spadoti, L. M., Zacarchenco, P. B., & Trento, F. K. H. S. (2018). Probiotic Functional Carbonated Whey Beverages: Development and Quality Evaluation. Beverages, 4(3), 49. https://doi.org/10.3390/beverages4030049
Antonialli, F., Rezende, D. C. de, & Carneiro, J. de D. S. (2018). New Products Development: a Marketing Study of a Popsicle Produced with Whey. Organizações Rurais & Agroindustriais, 20(1), 1–14. https://doi.org/10.21714/2238-68902018v20n1p1
Arellano-García, L., Flores-Payán, V., & McCulligh, C. (2024). Cheese whey generation, management and potential for biogas production in Mexico and the State of Jalisco. International Journal of Sustainable Engineering, 17(1), 995–1007. https://doi.org/10.1080/19397038.2024.2417018
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Asunis, F., Cappai, G., Carucci, A., Cera, M., De Gioannis, G., Deidda, G. P., Farru, G., Massacci, G., Muntoni, A., Piredda, M., & Serpe, A. (2024). A case study of implementation of circular economy principles to waste management: Integrated treatment of cheese whey and hi-tech waste. Detritus, 28, 41–47. https://doi.org/10.31025/2611-4135/2024.19405
Avirineni, B. S., Singh, A., Zapata, R. C., Stevens, R. D., Phillips, C. D., & Chelikani, P. K. (2022). Diets Containing Egg or Whey Protein and Inulin Fiber Improve Energy Balance and Modulate Gut Microbiota in Exercising Obese Rats. Molecular Nutrition & Food Research, 66(7). https://doi.org/10.1002/mnfr.202100653
Baba, W. N., Mudgil, P., Baby, B., Vijayan, R., Gan, C.-Y., & Maqsood, S. (2021). New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates: Identification, characterization, and molecular interaction. Journal of Dairy Science, 104(7), 7393–7405. https://doi.org/10.3168/jds.2020-19868
Báez, J., Fernández‐Fernández, A. M., Tironi, V., Bollati‐Fogolín, M., Añón, M. C., & Medrano‐Fernández, A. (2021). Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α‐lactalbumin hydrolysate. Journal of Food Science, 86(10), 4479–4490. https://doi.org/10.1111/1750-3841.15918
Barba, F. J. (2021). An Integrated Approach for the Valorization of Cheese Whey. Foods, 10(3), 564. https://doi.org/10.3390/foods10030564
Barone, G., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2022). Interactions between whey proteins and calcium salts and implications for the formulation of dairy protein‐based nutritional beverage products: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1254–1274. https://doi.org/10.1111/1541-4337.12884
Besediuk, V., Yatskov, M., Korchyk, N., Kucherova, A., & Maletskyi, Z. (2024). Whey - From waste to a valuable resource. Journal of Agriculture and Food Research, 18, 101280. https://doi.org/10.1016/j.jafr.2024.101280
Birnbaum, M. D. (2018). A Circular Dichroism Analysis of Commercially Available Powdered Whey Protein Structure. Journal of Nutrition & Food Sciences, 08(03). https://doi.org/10.4172/2155-9600.1000690
Solak, B. B., & Akin, N. (2012). Health Benefits of Whey Protein: A Review. Journal of Food Science and Engineering, 2(3). https://doi.org/10.17265/2159-5828/2012.03.001
Brimelow, R. E., West, N. P., Williams, L. T., Cripps, A. W., & Cox, A. J. (2017). A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 57(8), 1593–1602. https://doi.org/10.1080/10408398.2014.995264
Bull, S. P., Hong, Y., Khutoryanskiy, V. V., Parker, J. K., Faka, M., & Methven, L. (2017). Whey protein mouth drying influenced by thermal denaturation. Food Quality and Preference, 56, 233–240. https://doi.org/10.1016/j.foodqual.2016.03.008
Bustamante, S. Z., Valencia, J. U. S., Londoño, G. A. C., Restrepo, D. L. D., & González, J. H. G. (2021). Hydrolysates from ultrafiltrated double‐cream cheese whey: Enzymatic hydrolysis, antioxidant, and ACE‐inhibitory activities and peptide characterization. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15790
Byrne, D. V. (2020). Current Trends in Multidisciplinary Approaches to Understanding Consumer Preference and Acceptance of Food Products. Foods, 9(10), 1380. https://doi.org/10.3390/foods9101380
Caballero, A., Caballero, P., León, F., Rodríguez-Morgado, B., Martín, L., Parrado, J., Vaswani, J., & Ramos-Martín, A. (2021). Conversion of Whey into Value-Added Products through Fermentation and Membrane Fractionation. Water, 13(12), 1623. https://doi.org/10.3390/w13121623
Carter, B. G., Cheng, N., Kapoor, R., Meletharayil, G. H., & Drake, M. A. (2021). Invited review: Microfiltration-derived casein and whey proteins from milk. Journal of Dairy Science, 104(3), 2465–2479. https://doi.org/10.3168/jds.2020-18811
Castro, W. F., Cruz, A. G., Bisinotto, M. S., Guerreiro, L. M. R., Faria, J. A. F., Bolini, H. M. A., Cunha, R. L., & Deliza, R. (2013). Development of probiotic dairy beverages: Rheological properties and application of mathematical models in sensory evaluation. Journal of Dairy Science, 96(1), 16–25. https://doi.org/10.3168/jds.2012-5590
Çelik, K. (Ed.). (2020). Whey: Every aspect. Tudás Alapítvány.
Ceniti, C., Di Vito, A., Ambrosio, R. L., Anastasio, A., Bria, J., Britti, D., & Chiarella, E. (2024). Food Safety Assessment and Nutraceutical Outcomes of Dairy By-Products: Ovine Milk Whey as Wound Repair Enhancer on Injured Human Primary Gingival Fibroblasts. Foods, 13(5), 683. https://doi.org/10.3390/foods13050683
Chalermthai, B., Chan, W. Y., Bastidas-Oyanedel, J.-R., Taher, H., Olsen, B. D., & Schmidt, J. E. (2019). Preparation and Characterization of Whey Protein-Based Polymers Produced from Residual Dairy Streams. Polymers, 11(4), 722. https://doi.org/10.3390/polym11040722
Childs, J. L., & Drake, M. (2010). Consumer Perception of Astringency in Clear Acidic Whey Protein Beverages. Journal of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01834.x
Chungchunlam, S. M. S., Henare, S. J., Ganesh, S., & Moughan, P. J. (2015). Dietary whey protein influences plasma satiety-related hormones and plasma amino acids in normal-weight adult women. European Journal of Clinical Nutrition, 69(2), 179–186. https://doi.org/10.1038/ejcn.2014.266
Cioablă, A. E., Djuric, A., Dumitrel, G.-A., Chirilă, D., & Pode, V. (2017). Biogas Production Using Waste Waters – Influence of Process Parameters for Test RIG at Laboratory Scale. Studia Universitatis Babeș-Bolyai Chemia, 62(1), 51–60. https://doi.org/10.24193/subbchem.2017.1.04
Corgneau, M., Gaiani, C., Petit, J., Nikolova, Y., Banon, S., Ritié‐Pertusa, L., Le, D. T. L., & Scher, J. (2019). Nutritional quality evaluation of commercial protein supplements. International Journal of Food Science & Technology, 54(8), 2586–2594. https://doi.org/10.1111/ijfs.14170
Daliri, E. B.-M., Lee, B. H., Park, B.-J., Kim, S.-H., & Oh, D.-H. (2018). Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology, 27(6), 1781–1789. https://doi.org/10.1007/s10068-018-0423-0
Dallas, D. C., Weinborn, V., de Moura Bell, J. M. L. N., Wang, M., Parker, E. A., Guerrero, A., Hettinga, K. A., Lebrilla, C. B., German, J. B., & Barile, D. (2014). Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Research International, 63, 203–209. https://doi.org/10.1016/j.foodres.2014.03.021
Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2016). Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Safety and Environmental Protection, 101, 27–33. https://doi.org/10.1016/j.psep.2015.05.006
Devries, M. C., & Phillips, S. M. (2015). Supplemental Protein in Support of Muscle Mass and Health: Advantage Whey. Journal of Food Science, 80(S1). https://doi.org/10.1111/1750-3841.12802
Dinika, I., & Utama, G. L. (2019). Cheese whey as potential resource for antimicrobial edible film and active packaging production. Foods and Raw Materials, 7(2), 229–239. https://doi.org/10.21603/2308-4057-2019-2-229-239
Eberhardt, A., López, E. C., Marino, F., Mammarella, E. J., Manzo, R. M., & Sihufe, G. A. (2021). Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. International Journal of Dairy Technology, 74(3), 489–504. https://doi.org/10.1111/1471-0307.12795
El-Tanboly, E. (2017). Recovery of Cheese Whey, a by-Product from the Dairy Industry for use as an Animal Feed. Journal of Nutritional Health & Food Engineering, 6(5). https://doi.org/10.15406/jnhfe.2017.06.00215
Eseceli, H. (2021). Effect of Whey Protein-Enriched Water on Performance and in vivo Carcass Measurements in Fattening Merino Lambs. Alinteri Journal of Agricultural Sciences, 36(1), 61–65. https://doi.org/10.47059/alinteri/V36I1/AJAS21010
Espinosa, A. S., Castro, P. Y. H., Castañeda, J. S., & Toalá, J. E. A. (2024). Antioxidant activity and sensory acceptability of whey protein-based smoothie beverages made from mango (Mangifera indica L.) cv Haden and strawberry (Fragaria x ananassa Duch.) cv Festival. Agro Productividad. https://doi.org/10.32854/agrop.v17i2.2789
Evans, J., Zulewska, J., Newbold, M., Drake, M. A., & Barbano, D. M. (2010). Comparison of composition and sensory properties of 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 93(5), 1824–1843. https://doi.org/10.3168/jds.2009-2723
Faucher, M., Geoffroy, T. R., Thibodeau, J., Gaaloul, S., & Bazinet, L. (2022). Semi-Industrial Production of a DPP-IV and ACE Inhibitory Peptide Fraction from Whey Protein Concentrate Hydrolysate by Electrodialysis with Ultrafiltration Membrane. Membranes, 12(4), 409. https://doi.org/10.3390/membranes12040409
Feng, C., Tian, L., Hong, H., Wang, Q., Zhan, X., Luo, Y., & Tan, Y. (2022). In Vitro Gut Fermentation of Whey Protein Hydrolysate: An Evaluation of Its Potential Modulation on Infant Gut Microbiome. Nutrients, 14(7), 1374. https://doi.org/10.3390/nu14071374
Gärtner, A.-K., Matullat, I., Genuttis, D., Engelhardt, S., Sveinsdóttir, K., Niimi, J., & Rusu, A. (2024). Vegan spread applications of alternative protein from torula yeast: product development and consumer perception. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1285883
Ghanimah, M., & Ibrahim, E. (2018). Effect of pH, carbohydrates, and NaCl on functional properties of whey proteins. Journal of Sustainable Agricultural Sciences, 0(0), 0–0. https://doi.org/10.21608/jsas.2018.3617.1064
Gianegitz, M. R., Souza, R. P. de, Almeida, J. S. de, Wasilewski, R. de S., Silva, M. L. D. da, Mansolelli, G. G., Braga, T. C., Cunha, I. A. T. da, Grandi, M. C., Oliveira, S. L. de, Colombo, F. G. S., & Costa, I. B. da. (2024). Contributions of genetic improvement programs for dairy livestock farming. In Biological and Agricultural Sciences: Theory and Practice. Seven Editora. https://doi.org/10.56238/sevened2024.008-004
Giblin, L., Yalçın, A. S., Biçim, G., Krämer, A. C., Chen, Z., Callanan, M. J., Arranz, E., & Davies, M. J. (2019). Whey proteins: targets of oxidation, or mediators of redox protection. Free Radical Research, 53(sup1), 1136–1152. https://doi.org/10.1080/10715762.2019.1632445
Graça, C., Raymundo, A., & Sousa, I. (2022). Yogurt and curd cheese as alternative ingredients to improve the gluten-free breadmaking. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.934602
Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28(3), 375–384. https://doi.org/10.1016/j.biotechadv.2010.02.002
Guo, M., Wang, H., & Wang, C. (2018). Interactions between whey protein and inulin in a model system. Journal of Food Science and Technology, 55(10), 4051–4058. https://doi.org/10.1007/s13197-018-3331-7
Ha, H.-K., Jeon, N.-E., Kim, J. W., Han, K.-S., Yun, S. S., Lee, M.-R., & Lee, W.-J. (2016). Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex. Korean Journal for Food Science of Animal Resources, 36(2), 267–274. https://doi.org/10.5851/kosfa.2016.36.2.267
Hallaji, S. M., Kuroshkarim, M., & Moussavi, S. P. (2019). Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnology, 19(1), 19. https://doi.org/10.1186/s12896-019-0513-y
Han, R., Hernández Álvarez, A. J., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates – Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4, 141–149. https://doi.org/10.1016/j.crfs.2021.03.001
Harwood, W. S., & Drake, M. (2019). Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. Journal of Sensory Studies, 34(3). https://doi.org/10.1111/joss.12493
Irkin, R., & Yalcin, O. (2017). The potential use of probiotic strains Lactobacillus acidophilus NRRL B 4495, Bifidobacterium bifidum NRRL B41410 in ?Lor Whey Cheese? and the effects on sensory properties [pdf]. Acta Scientiarum Polonorum Technologia Alimentaria, 16(2), 181–189. https://doi.org/10.17306/J.AFS.2017.0493
Janiaski, D. R., Pimentel, T. C., Cruz, A. G., & Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? Journal of Dairy Science, 99(7), 5273–5283. https://doi.org/10.3168/jds.2015-10097
Jiang, L., Zhang, Z., Qiu, C., & Wen, J. (2024). A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods, 13(15), 2453. https://doi.org/10.3390/foods13152453
Kaade, W., Méndez-Sánchez, C., Güell, C., De Lamo-Castellví, S., Mestres, M., & Ferrando, M. (2022). Complexed Biopolymer of Whey Protein and Carboxymethyl Cellulose to Enhance the Chemical Stability of Lemon Oil-in-Water Emulsions. ACS Food Science & Technology, 2(1), 41–48. https://doi.org/10.1021/acsfoodscitech.1c00274
Kanza, Majeed, M., Sameen, A., Usman khan, M., Ali Shariati, M., & Karapetkovska - Hristova, V. (2017). Impact of cheese whey protein on growth performance of broiler: An approach of cheese whey utilization in poultry feed. Journal of Microbiology, Biotechnology and Food Sciences, 6(4), 1117–1120. https://doi.org/10.15414/jmbfs.2017.6.4.1117-1120
Karabegović, I., Stamenković-Stojanović, S., Lazić, M., Đorđević, N., & Danilović, B. (2022). Antimicrobial activity and overall sensory acceptance of fermented goat whey beverage: Process conditions optimization using response surface approach. Advanced Technologies, 11(2), 26–35. https://doi.org/10.5937/savteh2202026K
Keogh, C., Li, C., & Gao, Z. (2019). Evolving consumer trends for whey protein sports supplements: the Heckman ordered probit estimation. Agricultural and Food Economics, 7(1), 6. https://doi.org/10.1186/s40100-019-0125-9
Kęska, P., Wójciak, K. M., & Stadnik, J. (2019). Bioactive peptides from beef products fermented by acid whey – in vitro and in silico study. Scientia Agricola, 76(4), 311–320. https://doi.org/10.1590/1678-992x-2018-0114
Khetsomphou, E., Deboli, F., Donten, M. L., & Bazinet, L. (2023). Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes, 13(1), 107. https://doi.org/10.3390/membranes13010107
Komeroski, M. R., & Oliveira, V. R. de. (2023). Influence of the Amount and Type of Whey Protein on the Chemical, Technological, and Sensory Quality of Pasta and Bakery Products. Foods, 12(14), 2801. https://doi.org/10.3390/foods12142801
Kristensen, H. T., Denon, Q., Tavernier, I., Gregersen, S. B., Hammershøj, M., Van der Meeren, P., Dewettinck, K., & Dalsgaard, T. K. (2021). Improved food functional properties of pea protein isolate in blends and co-precipitates with whey protein isolate. Food Hydrocolloids, 113, 106556. https://doi.org/10.1016/j.foodhyd.2020.106556
Królczyk, J., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry – a Review. Polish Journal of Food and Nutrition Sciences, 66(3), 157–165. https://doi.org/10.1515/pjfns-2015-0052
Kumar, M. D., Anupama, M., Baig, M. D., Beena, A., & Rajakumar, S. (2021). Development and characterisation of synbiotic whey beverage. Indian Journal of Dairy Science, 74(3), 208–214. https://doi.org/10.33785/IJDS.2021.v74i03.003
Lappa, I., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods, 8(8), 347. https://doi.org/10.3390/foods8080347
León-López, A., Pérez-Marroquín, X. A., Estrada-Fernández, A. G., Campos-Lozada, G., Morales-Peñaloza, A., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2022). Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers, 14(6), 1258. https://doi.org/10.3390/polym14061258
Li, H., Li, Z., & Ma, Y. (2023). Differences in proteomic and peptide profiles of whey protein by acid curd and enzyme curd process from bovine milk. Food Science of Animal Products, 1(2), 9240017. https://doi.org/10.26599/FSAP.2023.9240017
Li, J., & Zhu, F. (2024). Whey protein hydrolysates and infant formulas: Effects on physicochemical and biological properties. Comprehensive Reviews in Food Science and Food Safety, 23(3). https://doi.org/10.1111/1541-4337.13337
Liu, F., Liu, M., Zhang, T., Zhao, X., Wang, X., Kong, W., Cui, L., Luo, H., Guo, L., & Guo, Y. (2023). Transportation of whey protein-derived peptides using Caco-2 cell model and identification of novel cholesterol-lowering peptides. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9079
Liu, F., & Tang, C.-H. (2013). Soy Protein Nanoparticle Aggregates as Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 61(37), 8888–8898. https://doi.org/10.1021/jf401859y
Lizárraga-Chaidez, M., Mendoza-Sánchez, M., Abadía-García, L., & García-Pérez, J. (2023). El inocente impacto ambiental del suero de la leche. Epistemus (Sonora), 17(35). https://doi.org/https://doi.org/10.36790/epistemus.v17i35.316
Macedo, A., Azedo, D., Duarte, E., & Pereira, C. (2021). Valorization of Goat Cheese Whey through an Integrated Process of Ultrafiltration and Nanofiltration. Membranes, 11(7), 477. https://doi.org/10.3390/membranes11070477
Macwan, S. R., Dabhi, B. K., Parmar, S. C., & Aparnathi, K. D. (2016). Whey and its Utilization. International Journal of Current Microbiology and Applied Sciences, 5(8), 134–155. https://doi.org/10.20546/ijcmas.2016.508.016
Malos, I. G., Ghizdareanu, A.-I., Vidu, L., Matei, C. B., & Pasarin, D. (2025). The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods, 14(9), 1488. https://doi.org/10.3390/foods14091488
Martín-del-Campo, S. T., Martínez-Basilio, P. C., Sepúlveda-Álvarez, J. C., Gutiérrez-Melchor, S. E., Galindo-Peña, K. D., Lara-Domínguez, A. K., & Cardador-Martínez, A. (2019). Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production. Antioxidants, 8(6), 158. https://doi.org/10.3390/antiox8060158
Martino, E., Luce, A., Balestrieri, A., Mele, L., Anastasio, C., D’Onofrio, N., Balestrieri, M. L., & Campanile, G. (2023). Whey Improves In Vitro Endothelial Mitochondrial Function and Metabolic Redox Status in Diabetic State. Antioxidants, 12(6), 1311. https://doi.org/10.3390/antiox12061311
Matassa, S., Pelagalli, V., Papirio, S., Zamalloa, C., Verstraete, W., Esposito, G., & Pirozzi, F. (2022). Direct nitrogen stripping and upcycling from anaerobic digestate during conversion of cheese whey into single cell protein. Bioresource Technology, 358, 127308. https://doi.org/10.1016/j.biortech.2022.127308
Matiacevich, S., Soto Madrid, D., & Gutiérrez Cutiño, M. (2022). Economía circular: obtención y encapsulación de compuestos polifenólicos provenientes de desechos agroindustriales. RIVAR, 10(28). https://doi.org/10.35588/rivar.v10i28.5343
Mazorra-Manzano, M. A., Robles-Porchas, G. R., González-Velázquez, D. A., Torres-Llanez, M. J., Martínez-Porchas, M., García-Sifuentes, C. O., González-Córdova, A. F., & Vallejo-Córdoba, B. (2020). Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation, 6(1), 19. https://doi.org/10.3390/fermentation6010019
Mitropoulou, G., Prapa, I., Nikolaou, A., Tegopoulos, K., Tsirka, T., Chorianopoulos, N., Tassou, C., Kolovos, P., Grigoriou, M. E., & Kourkoutas, Y. (2022). Effect of Free or Immobilized Lactiplantibacillus plantarum T571 on Feta-Type Cheese Microbiome. Frontiers in Bioscience-Elite, 14(4). https://doi.org/10.31083/j.fbe1404031
Mollea, C., Marmo, L., & Bosco, F. (2013). Valorisation of Cheese Whey, a By-Product from the Dairy Industry. In Food Industry. InTech. https://doi.org/10.5772/53159
Moura, A. K. B. de, Lima, R. N. de, Lopes, K. T. de L., Lima Neto, J. A. de, Melo, V. L. de L., Lima, P. de O., & Gonçalves, J. de S. (2019). Calf performance when fed with cheese whey associated with discarded powdered milk. Semina: Ciências Agrárias, 40(6Supl3), 3595. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3595
Murata, M. M., Marques, J. B. da S., Morioka, L. R. I., & Suguimoto, H. H. (2023). Applications of Cheese Whey in Dairy Production Chains. In E. G. Satolo & P. A. B. Mac-Lean (Eds.), Cases on Managing Dairy Productive Chains (pp. 205–235). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-5472-5.ch010
Musina, O. (2018). The use of whey protein extract for manufacture of a whipped frozen dairy dessert. Mljekarstvo, 254–271. https://doi.org/10.15567/mljekarstvo.2018.0402
Narala, V. R., Zagorska, J., Sarenkova, I., Ciprovica, I., & Majore, K. (2022). Acid Whey Valorization for Biotechnological Lactobionic Acid Bio-production. Journal of Human, Earth, and Future, 3, 46–55. https://doi.org/10.28991/HEF-SP2022-01-04
Nychyk, O., Barton, W., Rudolf, A. M., Boscaini, S., Walsh, A., Bastiaanssen, T. F. S., Giblin, L., Cormican, P., Chen, L., Piotrowicz, Y., Derous, D., Fanning, Á., Yin, X., Grant, J., Melgar, S., Brennan, L., Mitchell, S. E., Cryan, J. F., Wang, J., … Nilaweera, K. N. (2021). Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Reports, 35(6), 109093. https://doi.org/10.1016/j.celrep.2021.109093
Nyulas, J., Dezsi, Ștefan, Niță, A., Toma, R.-A., & Lazăr, A.-M. (2024). Trends and Future Directions in Analysing Attractiveness of Geoparks Using an Automated Merging Method of Multiple Databases—R-Based Bibliometric Analysis. Land, 13(10), 1627. https://doi.org/10.3390/land13101627
O’Donoghue, L. T., & Murphy, E. G. (2023). Nondairy food applications of whey and milk permeates: Direct and indirect uses. Comprehensive Reviews in Food Science and Food Safety, 22(4), 2652–2677. https://doi.org/10.1111/1541-4337.13157
Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6. https://doi.org/10.1016/j.cofs.2015.07.008
Pal, S., Ellis, V., & Dhaliwal, S. (2010). Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. British Journal of Nutrition, 104(5), 716–723. https://doi.org/10.1017/S0007114510000991
Pal, S., & Radavelli‐Bagatini, S. (2013). The effects of whey protein on cardiometabolic risk factors. Obesity Reviews, 14(4), 324–343. https://doi.org/10.1111/obr.12005
Panesar, P. S., & Kennedy, J. F. (2012). Biotechnological approaches for the value addition of whey. Critical Reviews in Biotechnology, 32(4), 327–348. https://doi.org/10.3109/07388551.2011.640624
Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: current options and future scenario – a critical review. Nutrition & Food Science, 48(3), 520–535. https://doi.org/10.1108/NFS-01-2018-0017
Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology, 52(11), 6847–6858. https://doi.org/10.1007/s13197-015-1894-0
Pavoni, J. M. F., Leidens, N., Luchese, C. L., Baldasso, C., & Tessaro, I. C. (2020). In natura ovine whey proteins concentration by ultrafiltration combining batch and diafiltration operating modes. Journal of Food Process Engineering, 43(12). https://doi.org/10.1111/jfpe.13554
Pedro, S., Pereira, L., Domingues, F., Ramos, A., & Luís, Â. (2023). Optimization of Whey Protein-Based Films Incorporating Foeniculum vulgare Mill. Essential Oil. Journal of Functional Biomaterials, 14(3), 121. https://doi.org/10.3390/jfb14030121
Pereira, C., Henriques, M., Gomes, D., Gomez-Zavaglia, A., & de Antoni, G. (2015). Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry. Food Technology and Biotechnology, 53. https://doi.org/10.17113/ftb.53.03.15.4043
Pezeshki, A., Fahim, A., & Chelikani, P. K. (2015). Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats. The Journal of Nutrition, 145(10), 2236–2244. https://doi.org/10.3945/jn.115.213843
Pineda-Quiroga, C., Atxaerandio, R., Ruíz, R., & García-Rodríguez, A. (2015). Suplementación con lactosuero en polvo y concentrado protéico de lactosuero en dietas de iniciación de broilers: Efectos sobre el redimiento productivo. XVI Jornadas Sobre Producción Animal, 269–271. https://www.aida-itea.org/aida-itea/files/jornadas/2015/comunicaciones/2015_NyA_47.pdf
Pires, A., Bożek, A., Pietruszka, H., Szkolnicka, K., Gomes, D., Díaz, O., Cobos, A., & Pereira, C. (2024). Whey Cheeses Containing Probiotic and Bioprotective Cultures Produced with Ultrafiltrated Cow’s Whey. Foods, 13(8), 1214. https://doi.org/10.3390/foods13081214
Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods, 10(5), 1067. https://doi.org/10.3390/foods10051067
Pires, A., Tan, G., Gomes, D., Pereira-Dias, S., Díaz, O., Cobos, A., & Pereira, C. (2023). Application of Ultrafiltration to Produce Sheep’s and Goat’s Whey-Based Synbiotic Kefir Products. Membranes, 13(5), 473. https://doi.org/10.3390/membranes13050473
Precedence Research. (2025, May 16). Whey protein market size, share, and trends 2025 to 2034 [Report]. Precedence Research. Available at <https://www.precedenceresearch.com/whey-protein-market>.
Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132(3), 1221–1229. https://doi.org/10.1016/j.foodchem.2011.11.091
Ramos-Suárez, J. L., Álvarez-Méndez, S. J., Ritter, A., González, J. M., & Pérez, A. C. (2024). A comprehensive evaluation of cheese whey to produce biogas in the Canary Islands. Biomass and Bioenergy, 180, 107008. https://doi.org/10.1016/j.biombioe.2023.107008
Rasouli, M., Abbasi, S., Azarikia, F., & Ettelaie, R. (2020). On the heat stability of whey protein: Effect of sodium hexametaphosphate. International Journal of Dairy Technology, 73(1), 46–56. https://doi.org/10.1111/1471-0307.12626
Reale, E., Govindasamy-Lucey, S., Johnson, M. E., Jaeggi, J. J., Molitor, M., Lu, Y., & Lucey, J. A. (2020). Effects of the depletion of whey proteins from unconcentrated milk using microfiltration on the yield, functionality, and nutritional profile of Cheddar cheese. Journal of Dairy Science, 103(11), 9906–9922. https://doi.org/10.3168/jds.2020-18713
Reimer, R. A., Willis, H. J., Tunnicliffe, J. M., Park, H., Madsen, K. L., & Soto‐Vaca, A. (2017). Inulin‐type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Molecular Nutrition & Food Research, 61(11). https://doi.org/10.1002/mnfr.201700484
Rico, C., Muñoz, N., & Rico, J. L. (2015). Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate. Bioresource Technology, 189, 327–333. https://doi.org/10.1016/j.biortech.2015.04.032
Rigamonti, A. E., Leoncini, R., Casnici, C., Marelli, O., De Col, A., Tamini, S., Lucchetti, E., Cicolini, S., Abbruzzese, L., Cella, S. G., & Sartorio, A. (2019). Whey Proteins Reduce Appetite, Stimulate Anorexigenic Gastrointestinal Peptides and Improve Glucometabolic Homeostasis in Young Obese Women. Nutrients, 11(2), 247. https://doi.org/10.3390/nu11020247
Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, R., & García-Cano, I. (2021). Invited review: Acid whey trends and health benefits. Journal of Dairy Science, 104(2), 1262–1275. https://doi.org/10.3168/jds.2020-19038
Ryan, M. P., & Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology, 15(3), 479–498. https://doi.org/10.1007/s11157-016-9402-1
Saetang, N., & Tipnee, S. (2022). Anaerobic digestion of food waste from fruits and vegetables to improve stability and effectiveness. Maejo International Journal of Energy and Environmental Communication, 4(1), 55–60. https://doi.org/10.54279/mijeec.v4i1.248063
Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT, 65, 978–986. https://doi.org/10.1016/j.lwt.2015.09.027
Sajdakowska, M., Gębski, J., Gutkowska, K., & Żakowska-Biemans, S. (2018). Importance of Health Aspects in Polish Consumer Choices of Dairy Products. Nutrients, 10(8), 1007. https://doi.org/10.3390/nu10081007
Salgado, M. J. G., Rosario, I. L. dos S., Almeida, A. C. de O., Rekowsky, B. S. dos S., Paim, U. M., Otero, D. M., Mamede, M. E. de O., & da Costa, M. P. (2023). Buffalo Whey-Based Cocoa Beverages with Unconventional Plant-Based Flours: The Effect of Information and Taste on Consumer Perception. Beverages, 9(4), 90. https://doi.org/10.3390/beverages9040090
Sansi, M. S., Iram, D., Kumar, S., kapila, S., & Meena, S. (2024). ‘Proteomic characterization and Molecular Mechanism of Goat Whey Protein-Derived Bioactive Peptides as Pancreatic Lipase and α-Amylase Inhibitors.’ https://doi.org/10.1101/2024.12.23.630156
Schoina, V., Terpou, A., Papadaki, A., Bosnea, L., Kopsahelis, N., & Kanellaki, M. (2019). Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods, 9(1), 13. https://doi.org/10.3390/foods9010013
Shan, H., Guo, Y., Li, J., Liu, Z., Chen, S., Dashnyam, B., McClements, D. J., Cao, C., Xu, X., & Yuan, B. (2024). Impact of Whey Protein Corona Formation around TiO 2 Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. Journal of Agricultural and Food Chemistry, 72(9), 4958–4976. https://doi.org/10.1021/acs.jafc.3c07078
Sharma, P., Trivedi, N., & Gat, Y. (2017). Development of functional fermented whey–oat-based product using probiotic bacteria. 3 Biotech, 7(4), 272. https://doi.org/10.1007/s13205-017-0906-3
Shertzer, H. G., Woods, S. E., Krishan, M., Genter, M. B., & Pearson, K. J. (2011). Dietary Whey Protein Lowers the Risk for Metabolic Disease in Mice Fed a High-Fat Diet,. The Journal of Nutrition, 141(4), 582–587. https://doi.org/10.3945/jn.110.133736
Simões, L. de S., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23–45. https://doi.org/10.1016/j.cis.2017.02.010
Sinaga, S., Ginting, J. G., Simanjuntak, H. A., Sipahutar, D. M., Zega, D. F., Yanti, Y., Sinaga, S., Barus, L., & Purba, H. (2023). Optimation of Green Synthesis Biopolymer Cellulose Using Acetobacter xylinum From Whey as Media of Bacteria. Jurnal Pembelajaran Dan Biologi Nukleus, 9(3), 668–677. https://doi.org/10.36987/jpbn.v9i3.5067
Skryplonek, K., Dmytrów, I., & Mituniewicz-Małek, A. (2019). Probiotic fermented beverages based on acid whey. Journal of Dairy Science, 102(9), 7773–7780. https://doi.org/10.3168/jds.2019-16385
Smetana, S., Palanisamy, M., Mathys, A., & Heinz, V. (2016). Sustainability of insect use for feed and food: Life Cycle Assessment perspective. Journal of Cleaner Production, 137, 741–751. https://doi.org/10.1016/j.jclepro.2016.07.148
Smetana, S., Schmitt, E., & Mathys, A. (2019). Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling, 144, 285–296. https://doi.org/10.1016/j.resconrec.2019.01.042
Soumati, B., Atmani, M., Benabderrahmane, A., & Benjelloun, M. (2023). Whey Valorization – Innovative Strategies for Sustainable Development and Value-Added Product Creation. Journal of Ecological Engineering, 24(10), 86–104. https://doi.org/10.12911/22998993/169505
Sousa, G. T., Lira, F. S., Rosa, J. C., de Oliveira, E. P., Oyama, L. M., Santos, R. V, & Pimentel, G. D. (2012). Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease, 11(1), 67. https://doi.org/10.1186/1476-511X-11-67
Tesfaw, A. (2023). The current trends of bioethanol production from cheese whey using yeasts: biological and economical perspectives. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1183035
Tian, M., Cheng, J., Wang, H., Xie, Q., Wei, Q., & Guo, M. (2022). Effects of polymerized goat milk whey protein on physicochemical properties and microstructure of recombined goat milk yogurt. Journal of Dairy Science, 105(6), 4903–4914. https://doi.org/10.3168/jds.2021-21581
Tița, M. A., Moga, V.-M., Constantinescu, M. A., Bătușaru, C. M., & Tița, O. (2024). Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy. Recycling, 9(5), 79. https://doi.org/10.3390/recycling9050079
Tsimitri, P., Michailidis, A., Loizou, E., Mantzouridou, F. T., Gkatzionis, K., Mugampoza, E., & Nastis, S. A. (2021). Novel Foods and Neophobia: Evidence from Greece, Cyprus, and Uganda. Resources, 11(1), 2. https://doi.org/10.3390/resources11010002
Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024
Wang, G., & Guo, M. (2014). Property and storage stability of whey protein‐sucrose based safe paper glue. Journal of Applied Polymer Science, 131(1). https://doi.org/10.1002/app.39710
Wen‐qiong, W., Ji‐yang, Z., Qian, Y., & Jianju, L. (2021). The effect of composite enzyme catalysis whey protein cross‐linking on filtration performance. Food Science & Nutrition, 9(6), 3078–3090. https://doi.org/10.1002/fsn3.2265
Wenten, I. G., & Khoiruddin. (2016). Reverse osmosis applications: Prospect and challenges. Desalination, 391, 112–125. https://doi.org/10.1016/j.desal.2015.12.011
Wherry, B., Barbano, D. M., & Drake, M. A. (2019). Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. Journal of Dairy Science, 102(10), 8768–8784. https://doi.org/10.3168/jds.2019-16247
Yang, R., Bai, T., Yang, F., Yan, Y., Wu, Y., Meng, X., Gao, J., Hu, C., Li, X., & Chen, H. (2025). Polyphenol oxidase cross-linking enhances whey protein-induced systemic food allergy by regulating miRNA in CD4 + T cells. Food & Function, 16(2), 487–498. https://doi.org/10.1039/D4FO05284F
Yaşar, K., & Bozdogan, A. (2018). Effect of The Use of Different Whey Proteins on Some Properties of Sahlep Beverage Prepared from Functional Sahlep Powder. Turkish Journal of Agriculture - Food Science and Technology, 6(5), 520–523. https://doi.org/10.24925/turjaf.v6i5.520-523.1590
Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review. International Journal of Food Science & Technology, 43(3), 406–415. https://doi.org/10.1111/j.1365-2621.2006.01454.x
Zamani, H., Zamani, S., Zhang, Z., & Abbaspourrad, A. (2020). Exceptional colloidal stability of acidified whey protein beverages stabilized by soybean soluble polysaccharide. Journal of Food Science, 85(4), 989–997. https://doi.org/10.1111/1750-3841.15041
Zandona, E., Blažić, M., & Režek Jambrak, A. (2021). Whey Utilisation: Sustainable Uses and Environmental Approach. Food Technology and Biotechnology, 59(2), 147–161. https://doi.org/10.17113/ftb.59.02.21.6968
Zeng, X., Wang, Y., Yang, S., Liu, Y., Li, X., & Liu, D. (2024). The functionalities and applications of whey/whey protein in fermented foods: a review. Food Science and Biotechnology, 33(4), 769–790. https://doi.org/10.1007/s10068-023-01460-5
Zhang, M. T., Jo, Y., Lopetcharat, K., & Drake, M. A. (2020). Comparison of a central location test versus a home usage test for consumer perception of ready-to-mix protein beverages. Journal of Dairy Science, 103(4), 3107–3124. https://doi.org/10.3168/jds.2019-17260
Zhou, X., Tian, X., Song, L., Luo, L., Ma, Z., & Zhang, F. (2023). Donkey whey protein and peptides regulate gut microbiota community and physiological functions of D‐galactose‐induced aging mice. Food Science & Nutrition, 11(2), 752–764. https://doi.org/10.1002/fsn3.3111
Ziolkowski, A. Y., Şenol, N., Aslankoç, R., & Samur, G. (2024). Whey protein supplementation reduced the liver damage scores of rats fed with a high fat-high fructose diet. PLOS ONE, 19(4), e0301012. https://doi.org/10.1371/journal.pone.0301012
Zokaityte, E., Cernauskas, D., Klupsaite, D., Lele, V., Starkute, V., Zavistanaviciute, P., Ruzauskas, M., Gruzauskas, R., Juodeikiene, G., Rocha, J. M., Bliznikas, S., Viskelis, P., Ruibys, R., & Bartkiene, E. (2020). Bioconversion of Milk Permeate with Selected Lactic Acid Bacteria Strains and Apple By-Products into Beverages with Antimicrobial Properties and Enriched with Galactooligosaccharides. Microorganisms, 8(8), 1182. https://doi.org/10.3390/microorganisms8081182
Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749–2764. https://doi.org/10.1007/s00253-020-10408-2

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Luis Alberto Mendoza-Flores, Jesús Guadalupe Pérez-Flores, Laura García-Curiel, Alma Elizabeth Cruz-Guerrero, Emmanuel Pérez-Escalante, Elizabeth Contreras-López, Luis Guillermo González-Olivares

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.