Soro de leite como ingrediente funcional na indústria alimentícia: um estudo bibliométrico sobre seu potencial e inovação

Soro de leite como ingrediente funcional na indústria alimentícia: um estudo bibliométrico sobre seu potencial e inovação

Autores

DOI:

https://doi.org/10.58951/fstoday.2025.007

Palavras-chave:

Peptídeos bioativos, Tecnologias de encapsulamento, Digestão anaeróbia, Hidrolisados de proteínas, Bioeconomia circular

Resumo

O soro de leite, subproduto da indústria laticinista, apresenta desafios ambientais significativos devido à sua elevada carga orgânica quando descartado de forma inadequada. Este estudo teve como objetivo analisar a produção científica sobre a utilização do soro de leite na indústria alimentícia por meio de indicadores bibliométricos e mapeamento do conhecimento, a fim de identificar tendências, aplicações emergentes, inovações e lacunas na literatura. Foi realizada uma análise bibliométrica com dados extraídos da base Web of Science®, processados com o pacote Bibliometrix no software R. Os resultados revelaram um crescimento contínuo da produção científica entre 2004 e 2024, com uma taxa média anual de crescimento de 15,82%, destacando-se a China, os Estados Unidos e o Brasil como principais países contribuidores. As principais áreas de pesquisa incluem as propriedades funcionais do soro, suas aplicações em tecnologias de encapsulamento, estabilidade de emulsões e produção de peptídeos bioativos com propriedades antioxidantes, antimicrobianas e anti-hipertensivas. Ademais, o papel do soro na sustentabilidade é evidenciado por seu potencial na produção de biogás e biopolímeros, bem como em aplicações na nutrição humana e animal, em consonância com os princípios da economia circular. Conclui-se que a versatilidade do soro como ingrediente funcional e seu potencial em aplicações sustentáveis impulsionam o crescimento das pesquisas. Investigações futuras devem concentrar-se na otimização de processos biotecnológicos para ampliar a funcionalidade do soro, reduzir seu impacto ambiental e explorar seu potencial nutracêutico, principalmente por meio de estudos clínicos que validem os benefícios à saúde dos peptídeos bioativos derivados do soro.

Referências

Abitayeva, G., Bissenova, G., Mussabayeva, B., Naimanov, Y., Тultabayeva, Т., & Sarmurzina, Z. (2023). Development, quality and safety evaluation of a probiotic whey beverage. Functional Foods in Health and Disease, 13(7), 347. https://doi.org/10.31989/ffhd.v13i7.1121

Ahmadi, M., Pet, I., Stef, L., Dumitrescu, G., Nicula, M., Smuleac, L.-I., Pascalau, R., & Dronca, D. (2020). Reverse Osmosis of Whey - Valuable Biocomponent of Feed and Food. Revista de Chimie, 70(12), 4482–4487. https://doi.org/10.37358/RC.19.12.7780

Almeida, M. P. G. de, Mockaitis, G., & Weissbrodt, D. G. (2023). Got Whey? Sustainability Endpoints for the Dairy Industry through Resource Biorecovery. Fermentation, 9(10), 897. https://doi.org/10.3390/fermentation9100897

Alves, A. T. S. e, Spadoti, L. M., Zacarchenco, P. B., & Trento, F. K. H. S. (2018). Probiotic Functional Carbonated Whey Beverages: Development and Quality Evaluation. Beverages, 4(3), 49. https://doi.org/10.3390/beverages4030049

Antonialli, F., Rezende, D. C. de, & Carneiro, J. de D. S. (2018). New Products Development: a Marketing Study of a Popsicle Produced with Whey. Organizações Rurais & Agroindustriais, 20(1), 1–14. https://doi.org/10.21714/2238-68902018v20n1p1

Arellano-García, L., Flores-Payán, V., & McCulligh, C. (2024). Cheese whey generation, management and potential for biogas production in Mexico and the State of Jalisco. International Journal of Sustainable Engineering, 17(1), 995–1007. https://doi.org/10.1080/19397038.2024.2417018

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Asunis, F., Cappai, G., Carucci, A., Cera, M., De Gioannis, G., Deidda, G. P., Farru, G., Massacci, G., Muntoni, A., Piredda, M., & Serpe, A. (2024). A case study of implementation of circular economy principles to waste management: Integrated treatment of cheese whey and hi-tech waste. Detritus, 28, 41–47. https://doi.org/10.31025/2611-4135/2024.19405

Avirineni, B. S., Singh, A., Zapata, R. C., Stevens, R. D., Phillips, C. D., & Chelikani, P. K. (2022). Diets Containing Egg or Whey Protein and Inulin Fiber Improve Energy Balance and Modulate Gut Microbiota in Exercising Obese Rats. Molecular Nutrition & Food Research, 66(7). https://doi.org/10.1002/mnfr.202100653

Baba, W. N., Mudgil, P., Baby, B., Vijayan, R., Gan, C.-Y., & Maqsood, S. (2021). New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates: Identification, characterization, and molecular interaction. Journal of Dairy Science, 104(7), 7393–7405. https://doi.org/10.3168/jds.2020-19868

Báez, J., Fernández‐Fernández, A. M., Tironi, V., Bollati‐Fogolín, M., Añón, M. C., & Medrano‐Fernández, A. (2021). Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α‐lactalbumin hydrolysate. Journal of Food Science, 86(10), 4479–4490. https://doi.org/10.1111/1750-3841.15918

Barba, F. J. (2021). An Integrated Approach for the Valorization of Cheese Whey. Foods, 10(3), 564. https://doi.org/10.3390/foods10030564

Barone, G., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2022). Interactions between whey proteins and calcium salts and implications for the formulation of dairy protein‐based nutritional beverage products: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1254–1274. https://doi.org/10.1111/1541-4337.12884

Besediuk, V., Yatskov, M., Korchyk, N., Kucherova, A., & Maletskyi, Z. (2024). Whey - From waste to a valuable resource. Journal of Agriculture and Food Research, 18, 101280. https://doi.org/10.1016/j.jafr.2024.101280

Birnbaum, M. D. (2018). A Circular Dichroism Analysis of Commercially Available Powdered Whey Protein Structure. Journal of Nutrition & Food Sciences, 08(03). https://doi.org/10.4172/2155-9600.1000690

Solak, B. B., & Akin, N. (2012). Health Benefits of Whey Protein: A Review. Journal of Food Science and Engineering, 2(3). https://doi.org/10.17265/2159-5828/2012.03.001

Brimelow, R. E., West, N. P., Williams, L. T., Cripps, A. W., & Cox, A. J. (2017). A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 57(8), 1593–1602. https://doi.org/10.1080/10408398.2014.995264

Bull, S. P., Hong, Y., Khutoryanskiy, V. V., Parker, J. K., Faka, M., & Methven, L. (2017). Whey protein mouth drying influenced by thermal denaturation. Food Quality and Preference, 56, 233–240. https://doi.org/10.1016/j.foodqual.2016.03.008

Bustamante, S. Z., Valencia, J. U. S., Londoño, G. A. C., Restrepo, D. L. D., & González, J. H. G. (2021). Hydrolysates from ultrafiltrated double‐cream cheese whey: Enzymatic hydrolysis, antioxidant, and ACE‐inhibitory activities and peptide characterization. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15790

Byrne, D. V. (2020). Current Trends in Multidisciplinary Approaches to Understanding Consumer Preference and Acceptance of Food Products. Foods, 9(10), 1380. https://doi.org/10.3390/foods9101380

Caballero, A., Caballero, P., León, F., Rodríguez-Morgado, B., Martín, L., Parrado, J., Vaswani, J., & Ramos-Martín, A. (2021). Conversion of Whey into Value-Added Products through Fermentation and Membrane Fractionation. Water, 13(12), 1623. https://doi.org/10.3390/w13121623

Carter, B. G., Cheng, N., Kapoor, R., Meletharayil, G. H., & Drake, M. A. (2021). Invited review: Microfiltration-derived casein and whey proteins from milk. Journal of Dairy Science, 104(3), 2465–2479. https://doi.org/10.3168/jds.2020-18811

Castro, W. F., Cruz, A. G., Bisinotto, M. S., Guerreiro, L. M. R., Faria, J. A. F., Bolini, H. M. A., Cunha, R. L., & Deliza, R. (2013). Development of probiotic dairy beverages: Rheological properties and application of mathematical models in sensory evaluation. Journal of Dairy Science, 96(1), 16–25. https://doi.org/10.3168/jds.2012-5590

Çelik, K. (Ed.). (2020). Whey: Every aspect. Tudás Alapítvány.

Ceniti, C., Di Vito, A., Ambrosio, R. L., Anastasio, A., Bria, J., Britti, D., & Chiarella, E. (2024). Food Safety Assessment and Nutraceutical Outcomes of Dairy By-Products: Ovine Milk Whey as Wound Repair Enhancer on Injured Human Primary Gingival Fibroblasts. Foods, 13(5), 683. https://doi.org/10.3390/foods13050683

Chalermthai, B., Chan, W. Y., Bastidas-Oyanedel, J.-R., Taher, H., Olsen, B. D., & Schmidt, J. E. (2019). Preparation and Characterization of Whey Protein-Based Polymers Produced from Residual Dairy Streams. Polymers, 11(4), 722. https://doi.org/10.3390/polym11040722

Childs, J. L., & Drake, M. (2010). Consumer Perception of Astringency in Clear Acidic Whey Protein Beverages. Journal of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01834.x

Chungchunlam, S. M. S., Henare, S. J., Ganesh, S., & Moughan, P. J. (2015). Dietary whey protein influences plasma satiety-related hormones and plasma amino acids in normal-weight adult women. European Journal of Clinical Nutrition, 69(2), 179–186. https://doi.org/10.1038/ejcn.2014.266

Cioablă, A. E., Djuric, A., Dumitrel, G.-A., Chirilă, D., & Pode, V. (2017). Biogas Production Using Waste Waters – Influence of Process Parameters for Test RIG at Laboratory Scale. Studia Universitatis Babeș-Bolyai Chemia, 62(1), 51–60. https://doi.org/10.24193/subbchem.2017.1.04

Corgneau, M., Gaiani, C., Petit, J., Nikolova, Y., Banon, S., Ritié‐Pertusa, L., Le, D. T. L., & Scher, J. (2019). Nutritional quality evaluation of commercial protein supplements. International Journal of Food Science & Technology, 54(8), 2586–2594. https://doi.org/10.1111/ijfs.14170

Daliri, E. B.-M., Lee, B. H., Park, B.-J., Kim, S.-H., & Oh, D.-H. (2018). Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology, 27(6), 1781–1789. https://doi.org/10.1007/s10068-018-0423-0

Dallas, D. C., Weinborn, V., de Moura Bell, J. M. L. N., Wang, M., Parker, E. A., Guerrero, A., Hettinga, K. A., Lebrilla, C. B., German, J. B., & Barile, D. (2014). Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Research International, 63, 203–209. https://doi.org/10.1016/j.foodres.2014.03.021

Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2016). Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Safety and Environmental Protection, 101, 27–33. https://doi.org/10.1016/j.psep.2015.05.006

Devries, M. C., & Phillips, S. M. (2015). Supplemental Protein in Support of Muscle Mass and Health: Advantage Whey. Journal of Food Science, 80(S1). https://doi.org/10.1111/1750-3841.12802

Dinika, I., & Utama, G. L. (2019). Cheese whey as potential resource for antimicrobial edible film and active packaging production. Foods and Raw Materials, 7(2), 229–239. https://doi.org/10.21603/2308-4057-2019-2-229-239

Eberhardt, A., López, E. C., Marino, F., Mammarella, E. J., Manzo, R. M., & Sihufe, G. A. (2021). Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. International Journal of Dairy Technology, 74(3), 489–504. https://doi.org/10.1111/1471-0307.12795

El-Tanboly, E. (2017). Recovery of Cheese Whey, a by-Product from the Dairy Industry for use as an Animal Feed. Journal of Nutritional Health & Food Engineering, 6(5). https://doi.org/10.15406/jnhfe.2017.06.00215

Eseceli, H. (2021). Effect of Whey Protein-Enriched Water on Performance and in vivo Carcass Measurements in Fattening Merino Lambs. Alinteri Journal of Agricultural Sciences, 36(1), 61–65. https://doi.org/10.47059/alinteri/V36I1/AJAS21010

Espinosa, A. S., Castro, P. Y. H., Castañeda, J. S., & Toalá, J. E. A. (2024). Antioxidant activity and sensory acceptability of whey protein-based smoothie beverages made from mango (Mangifera indica L.) cv Haden and strawberry (Fragaria x ananassa Duch.) cv Festival. Agro Productividad. https://doi.org/10.32854/agrop.v17i2.2789

Evans, J., Zulewska, J., Newbold, M., Drake, M. A., & Barbano, D. M. (2010). Comparison of composition and sensory properties of 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 93(5), 1824–1843. https://doi.org/10.3168/jds.2009-2723

Faucher, M., Geoffroy, T. R., Thibodeau, J., Gaaloul, S., & Bazinet, L. (2022). Semi-Industrial Production of a DPP-IV and ACE Inhibitory Peptide Fraction from Whey Protein Concentrate Hydrolysate by Electrodialysis with Ultrafiltration Membrane. Membranes, 12(4), 409. https://doi.org/10.3390/membranes12040409

Feng, C., Tian, L., Hong, H., Wang, Q., Zhan, X., Luo, Y., & Tan, Y. (2022). In Vitro Gut Fermentation of Whey Protein Hydrolysate: An Evaluation of Its Potential Modulation on Infant Gut Microbiome. Nutrients, 14(7), 1374. https://doi.org/10.3390/nu14071374

Gärtner, A.-K., Matullat, I., Genuttis, D., Engelhardt, S., Sveinsdóttir, K., Niimi, J., & Rusu, A. (2024). Vegan spread applications of alternative protein from torula yeast: product development and consumer perception. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1285883

Ghanimah, M., & Ibrahim, E. (2018). Effect of pH, carbohydrates, and NaCl on functional properties of whey proteins. Journal of Sustainable Agricultural Sciences, 0(0), 0–0. https://doi.org/10.21608/jsas.2018.3617.1064

Gianegitz, M. R., Souza, R. P. de, Almeida, J. S. de, Wasilewski, R. de S., Silva, M. L. D. da, Mansolelli, G. G., Braga, T. C., Cunha, I. A. T. da, Grandi, M. C., Oliveira, S. L. de, Colombo, F. G. S., & Costa, I. B. da. (2024). Contributions of genetic improvement programs for dairy livestock farming. In Biological and Agricultural Sciences: Theory and Practice. Seven Editora. https://doi.org/10.56238/sevened2024.008-004

Giblin, L., Yalçın, A. S., Biçim, G., Krämer, A. C., Chen, Z., Callanan, M. J., Arranz, E., & Davies, M. J. (2019). Whey proteins: targets of oxidation, or mediators of redox protection. Free Radical Research, 53(sup1), 1136–1152. https://doi.org/10.1080/10715762.2019.1632445

Graça, C., Raymundo, A., & Sousa, I. (2022). Yogurt and curd cheese as alternative ingredients to improve the gluten-free breadmaking. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.934602

Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28(3), 375–384. https://doi.org/10.1016/j.biotechadv.2010.02.002

Guo, M., Wang, H., & Wang, C. (2018). Interactions between whey protein and inulin in a model system. Journal of Food Science and Technology, 55(10), 4051–4058. https://doi.org/10.1007/s13197-018-3331-7

Ha, H.-K., Jeon, N.-E., Kim, J. W., Han, K.-S., Yun, S. S., Lee, M.-R., & Lee, W.-J. (2016). Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex. Korean Journal for Food Science of Animal Resources, 36(2), 267–274. https://doi.org/10.5851/kosfa.2016.36.2.267

Hallaji, S. M., Kuroshkarim, M., & Moussavi, S. P. (2019). Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnology, 19(1), 19. https://doi.org/10.1186/s12896-019-0513-y

Han, R., Hernández Álvarez, A. J., Maycock, J., Murray, B. S., & Boesch, C. (2021). Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates – Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 4, 141–149. https://doi.org/10.1016/j.crfs.2021.03.001

Harwood, W. S., & Drake, M. (2019). Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. Journal of Sensory Studies, 34(3). https://doi.org/10.1111/joss.12493

Irkin, R., & Yalcin, O. (2017). The potential use of probiotic strains Lactobacillus acidophilus NRRL B 4495, Bifidobacterium bifidum NRRL B41410 in ?Lor Whey Cheese? and the effects on sensory properties [pdf]. Acta Scientiarum Polonorum Technologia Alimentaria, 16(2), 181–189. https://doi.org/10.17306/J.AFS.2017.0493

Janiaski, D. R., Pimentel, T. C., Cruz, A. G., & Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? Journal of Dairy Science, 99(7), 5273–5283. https://doi.org/10.3168/jds.2015-10097

Jiang, L., Zhang, Z., Qiu, C., & Wen, J. (2024). A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods, 13(15), 2453. https://doi.org/10.3390/foods13152453

Kaade, W., Méndez-Sánchez, C., Güell, C., De Lamo-Castellví, S., Mestres, M., & Ferrando, M. (2022). Complexed Biopolymer of Whey Protein and Carboxymethyl Cellulose to Enhance the Chemical Stability of Lemon Oil-in-Water Emulsions. ACS Food Science & Technology, 2(1), 41–48. https://doi.org/10.1021/acsfoodscitech.1c00274

Kanza, Majeed, M., Sameen, A., Usman khan, M., Ali Shariati, M., & Karapetkovska - Hristova, V. (2017). Impact of cheese whey protein on growth performance of broiler: An approach of cheese whey utilization in poultry feed. Journal of Microbiology, Biotechnology and Food Sciences, 6(4), 1117–1120. https://doi.org/10.15414/jmbfs.2017.6.4.1117-1120

Karabegović, I., Stamenković-Stojanović, S., Lazić, M., Đorđević, N., & Danilović, B. (2022). Antimicrobial activity and overall sensory acceptance of fermented goat whey beverage: Process conditions optimization using response surface approach. Advanced Technologies, 11(2), 26–35. https://doi.org/10.5937/savteh2202026K

Keogh, C., Li, C., & Gao, Z. (2019). Evolving consumer trends for whey protein sports supplements: the Heckman ordered probit estimation. Agricultural and Food Economics, 7(1), 6. https://doi.org/10.1186/s40100-019-0125-9

Kęska, P., Wójciak, K. M., & Stadnik, J. (2019). Bioactive peptides from beef products fermented by acid whey – in vitro and in silico study. Scientia Agricola, 76(4), 311–320. https://doi.org/10.1590/1678-992x-2018-0114

Khetsomphou, E., Deboli, F., Donten, M. L., & Bazinet, L. (2023). Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes, 13(1), 107. https://doi.org/10.3390/membranes13010107

Komeroski, M. R., & Oliveira, V. R. de. (2023). Influence of the Amount and Type of Whey Protein on the Chemical, Technological, and Sensory Quality of Pasta and Bakery Products. Foods, 12(14), 2801. https://doi.org/10.3390/foods12142801

Kristensen, H. T., Denon, Q., Tavernier, I., Gregersen, S. B., Hammershøj, M., Van der Meeren, P., Dewettinck, K., & Dalsgaard, T. K. (2021). Improved food functional properties of pea protein isolate in blends and co-precipitates with whey protein isolate. Food Hydrocolloids, 113, 106556. https://doi.org/10.1016/j.foodhyd.2020.106556

Królczyk, J., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry – a Review. Polish Journal of Food and Nutrition Sciences, 66(3), 157–165. https://doi.org/10.1515/pjfns-2015-0052

Kumar, M. D., Anupama, M., Baig, M. D., Beena, A., & Rajakumar, S. (2021). Development and characterisation of synbiotic whey beverage. Indian Journal of Dairy Science, 74(3), 208–214. https://doi.org/10.33785/IJDS.2021.v74i03.003

Lappa, I., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods, 8(8), 347. https://doi.org/10.3390/foods8080347

León-López, A., Pérez-Marroquín, X. A., Estrada-Fernández, A. G., Campos-Lozada, G., Morales-Peñaloza, A., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2022). Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers, 14(6), 1258. https://doi.org/10.3390/polym14061258

Li, H., Li, Z., & Ma, Y. (2023). Differences in proteomic and peptide profiles of whey protein by acid curd and enzyme curd process from bovine milk. Food Science of Animal Products, 1(2), 9240017. https://doi.org/10.26599/FSAP.2023.9240017

Li, J., & Zhu, F. (2024). Whey protein hydrolysates and infant formulas: Effects on physicochemical and biological properties. Comprehensive Reviews in Food Science and Food Safety, 23(3). https://doi.org/10.1111/1541-4337.13337

Liu, F., Liu, M., Zhang, T., Zhao, X., Wang, X., Kong, W., Cui, L., Luo, H., Guo, L., & Guo, Y. (2023). Transportation of whey protein-derived peptides using Caco-2 cell model and identification of novel cholesterol-lowering peptides. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9079

Liu, F., & Tang, C.-H. (2013). Soy Protein Nanoparticle Aggregates as Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 61(37), 8888–8898. https://doi.org/10.1021/jf401859y

Lizárraga-Chaidez, M., Mendoza-Sánchez, M., Abadía-García, L., & García-Pérez, J. (2023). El inocente impacto ambiental del suero de la leche. Epistemus (Sonora), 17(35). https://doi.org/https://doi.org/10.36790/epistemus.v17i35.316

Macedo, A., Azedo, D., Duarte, E., & Pereira, C. (2021). Valorization of Goat Cheese Whey through an Integrated Process of Ultrafiltration and Nanofiltration. Membranes, 11(7), 477. https://doi.org/10.3390/membranes11070477

Macwan, S. R., Dabhi, B. K., Parmar, S. C., & Aparnathi, K. D. (2016). Whey and its Utilization. International Journal of Current Microbiology and Applied Sciences, 5(8), 134–155. https://doi.org/10.20546/ijcmas.2016.508.016

Malos, I. G., Ghizdareanu, A.-I., Vidu, L., Matei, C. B., & Pasarin, D. (2025). The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods, 14(9), 1488. https://doi.org/10.3390/foods14091488

Martín-del-Campo, S. T., Martínez-Basilio, P. C., Sepúlveda-Álvarez, J. C., Gutiérrez-Melchor, S. E., Galindo-Peña, K. D., Lara-Domínguez, A. K., & Cardador-Martínez, A. (2019). Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production. Antioxidants, 8(6), 158. https://doi.org/10.3390/antiox8060158

Martino, E., Luce, A., Balestrieri, A., Mele, L., Anastasio, C., D’Onofrio, N., Balestrieri, M. L., & Campanile, G. (2023). Whey Improves In Vitro Endothelial Mitochondrial Function and Metabolic Redox Status in Diabetic State. Antioxidants, 12(6), 1311. https://doi.org/10.3390/antiox12061311

Matassa, S., Pelagalli, V., Papirio, S., Zamalloa, C., Verstraete, W., Esposito, G., & Pirozzi, F. (2022). Direct nitrogen stripping and upcycling from anaerobic digestate during conversion of cheese whey into single cell protein. Bioresource Technology, 358, 127308. https://doi.org/10.1016/j.biortech.2022.127308

Matiacevich, S., Soto Madrid, D., & Gutiérrez Cutiño, M. (2022). Economía circular: obtención y encapsulación de compuestos polifenólicos provenientes de desechos agroindustriales. RIVAR, 10(28). https://doi.org/10.35588/rivar.v10i28.5343

Mazorra-Manzano, M. A., Robles-Porchas, G. R., González-Velázquez, D. A., Torres-Llanez, M. J., Martínez-Porchas, M., García-Sifuentes, C. O., González-Córdova, A. F., & Vallejo-Córdoba, B. (2020). Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation, 6(1), 19. https://doi.org/10.3390/fermentation6010019

Mitropoulou, G., Prapa, I., Nikolaou, A., Tegopoulos, K., Tsirka, T., Chorianopoulos, N., Tassou, C., Kolovos, P., Grigoriou, M. E., & Kourkoutas, Y. (2022). Effect of Free or Immobilized Lactiplantibacillus plantarum T571 on Feta-Type Cheese Microbiome. Frontiers in Bioscience-Elite, 14(4). https://doi.org/10.31083/j.fbe1404031

Mollea, C., Marmo, L., & Bosco, F. (2013). Valorisation of Cheese Whey, a By-Product from the Dairy Industry. In Food Industry. InTech. https://doi.org/10.5772/53159

Moura, A. K. B. de, Lima, R. N. de, Lopes, K. T. de L., Lima Neto, J. A. de, Melo, V. L. de L., Lima, P. de O., & Gonçalves, J. de S. (2019). Calf performance when fed with cheese whey associated with discarded powdered milk. Semina: Ciências Agrárias, 40(6Supl3), 3595. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3595

Murata, M. M., Marques, J. B. da S., Morioka, L. R. I., & Suguimoto, H. H. (2023). Applications of Cheese Whey in Dairy Production Chains. In E. G. Satolo & P. A. B. Mac-Lean (Eds.), Cases on Managing Dairy Productive Chains (pp. 205–235). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-5472-5.ch010

Musina, O. (2018). The use of whey protein extract for manufacture of a whipped frozen dairy dessert. Mljekarstvo, 254–271. https://doi.org/10.15567/mljekarstvo.2018.0402

Narala, V. R., Zagorska, J., Sarenkova, I., Ciprovica, I., & Majore, K. (2022). Acid Whey Valorization for Biotechnological Lactobionic Acid Bio-production. Journal of Human, Earth, and Future, 3, 46–55. https://doi.org/10.28991/HEF-SP2022-01-04

Nychyk, O., Barton, W., Rudolf, A. M., Boscaini, S., Walsh, A., Bastiaanssen, T. F. S., Giblin, L., Cormican, P., Chen, L., Piotrowicz, Y., Derous, D., Fanning, Á., Yin, X., Grant, J., Melgar, S., Brennan, L., Mitchell, S. E., Cryan, J. F., Wang, J., … Nilaweera, K. N. (2021). Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Reports, 35(6), 109093. https://doi.org/10.1016/j.celrep.2021.109093

Nyulas, J., Dezsi, Ștefan, Niță, A., Toma, R.-A., & Lazăr, A.-M. (2024). Trends and Future Directions in Analysing Attractiveness of Geoparks Using an Automated Merging Method of Multiple Databases—R-Based Bibliometric Analysis. Land, 13(10), 1627. https://doi.org/10.3390/land13101627

O’Donoghue, L. T., & Murphy, E. G. (2023). Nondairy food applications of whey and milk permeates: Direct and indirect uses. Comprehensive Reviews in Food Science and Food Safety, 22(4), 2652–2677. https://doi.org/10.1111/1541-4337.13157

Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6. https://doi.org/10.1016/j.cofs.2015.07.008

Pal, S., Ellis, V., & Dhaliwal, S. (2010). Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. British Journal of Nutrition, 104(5), 716–723. https://doi.org/10.1017/S0007114510000991

Pal, S., & Radavelli‐Bagatini, S. (2013). The effects of whey protein on cardiometabolic risk factors. Obesity Reviews, 14(4), 324–343. https://doi.org/10.1111/obr.12005

Panesar, P. S., & Kennedy, J. F. (2012). Biotechnological approaches for the value addition of whey. Critical Reviews in Biotechnology, 32(4), 327–348. https://doi.org/10.3109/07388551.2011.640624

Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: current options and future scenario – a critical review. Nutrition & Food Science, 48(3), 520–535. https://doi.org/10.1108/NFS-01-2018-0017

Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology, 52(11), 6847–6858. https://doi.org/10.1007/s13197-015-1894-0

Pavoni, J. M. F., Leidens, N., Luchese, C. L., Baldasso, C., & Tessaro, I. C. (2020). In natura ovine whey proteins concentration by ultrafiltration combining batch and diafiltration operating modes. Journal of Food Process Engineering, 43(12). https://doi.org/10.1111/jfpe.13554

Pedro, S., Pereira, L., Domingues, F., Ramos, A., & Luís, Â. (2023). Optimization of Whey Protein-Based Films Incorporating Foeniculum vulgare Mill. Essential Oil. Journal of Functional Biomaterials, 14(3), 121. https://doi.org/10.3390/jfb14030121

Pereira, C., Henriques, M., Gomes, D., Gomez-Zavaglia, A., & de Antoni, G. (2015). Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry. Food Technology and Biotechnology, 53. https://doi.org/10.17113/ftb.53.03.15.4043

Pezeshki, A., Fahim, A., & Chelikani, P. K. (2015). Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats. The Journal of Nutrition, 145(10), 2236–2244. https://doi.org/10.3945/jn.115.213843

Pineda-Quiroga, C., Atxaerandio, R., Ruíz, R., & García-Rodríguez, A. (2015). Suplementación con lactosuero en polvo y concentrado protéico de lactosuero en dietas de iniciación de broilers: Efectos sobre el redimiento productivo. XVI Jornadas Sobre Producción Animal, 269–271. https://www.aida-itea.org/aida-itea/files/jornadas/2015/comunicaciones/2015_NyA_47.pdf

Pires, A., Bożek, A., Pietruszka, H., Szkolnicka, K., Gomes, D., Díaz, O., Cobos, A., & Pereira, C. (2024). Whey Cheeses Containing Probiotic and Bioprotective Cultures Produced with Ultrafiltrated Cow’s Whey. Foods, 13(8), 1214. https://doi.org/10.3390/foods13081214

Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods, 10(5), 1067. https://doi.org/10.3390/foods10051067

Pires, A., Tan, G., Gomes, D., Pereira-Dias, S., Díaz, O., Cobos, A., & Pereira, C. (2023). Application of Ultrafiltration to Produce Sheep’s and Goat’s Whey-Based Synbiotic Kefir Products. Membranes, 13(5), 473. https://doi.org/10.3390/membranes13050473

Precedence Research. (2025, May 16). Whey protein market size, share, and trends 2025 to 2034 [Report]. Precedence Research. Available at <https://www.precedenceresearch.com/whey-protein-market>.

Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132(3), 1221–1229. https://doi.org/10.1016/j.foodchem.2011.11.091

Ramos-Suárez, J. L., Álvarez-Méndez, S. J., Ritter, A., González, J. M., & Pérez, A. C. (2024). A comprehensive evaluation of cheese whey to produce biogas in the Canary Islands. Biomass and Bioenergy, 180, 107008. https://doi.org/10.1016/j.biombioe.2023.107008

Rasouli, M., Abbasi, S., Azarikia, F., & Ettelaie, R. (2020). On the heat stability of whey protein: Effect of sodium hexametaphosphate. International Journal of Dairy Technology, 73(1), 46–56. https://doi.org/10.1111/1471-0307.12626

Reale, E., Govindasamy-Lucey, S., Johnson, M. E., Jaeggi, J. J., Molitor, M., Lu, Y., & Lucey, J. A. (2020). Effects of the depletion of whey proteins from unconcentrated milk using microfiltration on the yield, functionality, and nutritional profile of Cheddar cheese. Journal of Dairy Science, 103(11), 9906–9922. https://doi.org/10.3168/jds.2020-18713

Reimer, R. A., Willis, H. J., Tunnicliffe, J. M., Park, H., Madsen, K. L., & Soto‐Vaca, A. (2017). Inulin‐type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Molecular Nutrition & Food Research, 61(11). https://doi.org/10.1002/mnfr.201700484

Rico, C., Muñoz, N., & Rico, J. L. (2015). Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate. Bioresource Technology, 189, 327–333. https://doi.org/10.1016/j.biortech.2015.04.032

Rigamonti, A. E., Leoncini, R., Casnici, C., Marelli, O., De Col, A., Tamini, S., Lucchetti, E., Cicolini, S., Abbruzzese, L., Cella, S. G., & Sartorio, A. (2019). Whey Proteins Reduce Appetite, Stimulate Anorexigenic Gastrointestinal Peptides and Improve Glucometabolic Homeostasis in Young Obese Women. Nutrients, 11(2), 247. https://doi.org/10.3390/nu11020247

Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, R., & García-Cano, I. (2021). Invited review: Acid whey trends and health benefits. Journal of Dairy Science, 104(2), 1262–1275. https://doi.org/10.3168/jds.2020-19038

Ryan, M. P., & Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology, 15(3), 479–498. https://doi.org/10.1007/s11157-016-9402-1

Saetang, N., & Tipnee, S. (2022). Anaerobic digestion of food waste from fruits and vegetables to improve stability and effectiveness. Maejo International Journal of Energy and Environmental Communication, 4(1), 55–60. https://doi.org/10.54279/mijeec.v4i1.248063

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT, 65, 978–986. https://doi.org/10.1016/j.lwt.2015.09.027

Sajdakowska, M., Gębski, J., Gutkowska, K., & Żakowska-Biemans, S. (2018). Importance of Health Aspects in Polish Consumer Choices of Dairy Products. Nutrients, 10(8), 1007. https://doi.org/10.3390/nu10081007

Salgado, M. J. G., Rosario, I. L. dos S., Almeida, A. C. de O., Rekowsky, B. S. dos S., Paim, U. M., Otero, D. M., Mamede, M. E. de O., & da Costa, M. P. (2023). Buffalo Whey-Based Cocoa Beverages with Unconventional Plant-Based Flours: The Effect of Information and Taste on Consumer Perception. Beverages, 9(4), 90. https://doi.org/10.3390/beverages9040090

Sansi, M. S., Iram, D., Kumar, S., kapila, S., & Meena, S. (2024). ‘Proteomic characterization and Molecular Mechanism of Goat Whey Protein-Derived Bioactive Peptides as Pancreatic Lipase and α-Amylase Inhibitors.’ https://doi.org/10.1101/2024.12.23.630156

Schoina, V., Terpou, A., Papadaki, A., Bosnea, L., Kopsahelis, N., & Kanellaki, M. (2019). Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods, 9(1), 13. https://doi.org/10.3390/foods9010013

Shan, H., Guo, Y., Li, J., Liu, Z., Chen, S., Dashnyam, B., McClements, D. J., Cao, C., Xu, X., & Yuan, B. (2024). Impact of Whey Protein Corona Formation around TiO 2 Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. Journal of Agricultural and Food Chemistry, 72(9), 4958–4976. https://doi.org/10.1021/acs.jafc.3c07078

Sharma, P., Trivedi, N., & Gat, Y. (2017). Development of functional fermented whey–oat-based product using probiotic bacteria. 3 Biotech, 7(4), 272. https://doi.org/10.1007/s13205-017-0906-3

Shertzer, H. G., Woods, S. E., Krishan, M., Genter, M. B., & Pearson, K. J. (2011). Dietary Whey Protein Lowers the Risk for Metabolic Disease in Mice Fed a High-Fat Diet,. The Journal of Nutrition, 141(4), 582–587. https://doi.org/10.3945/jn.110.133736

Simões, L. de S., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23–45. https://doi.org/10.1016/j.cis.2017.02.010

Sinaga, S., Ginting, J. G., Simanjuntak, H. A., Sipahutar, D. M., Zega, D. F., Yanti, Y., Sinaga, S., Barus, L., & Purba, H. (2023). Optimation of Green Synthesis Biopolymer Cellulose Using Acetobacter xylinum From Whey as Media of Bacteria. Jurnal Pembelajaran Dan Biologi Nukleus, 9(3), 668–677. https://doi.org/10.36987/jpbn.v9i3.5067

Skryplonek, K., Dmytrów, I., & Mituniewicz-Małek, A. (2019). Probiotic fermented beverages based on acid whey. Journal of Dairy Science, 102(9), 7773–7780. https://doi.org/10.3168/jds.2019-16385

Smetana, S., Palanisamy, M., Mathys, A., & Heinz, V. (2016). Sustainability of insect use for feed and food: Life Cycle Assessment perspective. Journal of Cleaner Production, 137, 741–751. https://doi.org/10.1016/j.jclepro.2016.07.148

Smetana, S., Schmitt, E., & Mathys, A. (2019). Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling, 144, 285–296. https://doi.org/10.1016/j.resconrec.2019.01.042

Soumati, B., Atmani, M., Benabderrahmane, A., & Benjelloun, M. (2023). Whey Valorization – Innovative Strategies for Sustainable Development and Value-Added Product Creation. Journal of Ecological Engineering, 24(10), 86–104. https://doi.org/10.12911/22998993/169505

Sousa, G. T., Lira, F. S., Rosa, J. C., de Oliveira, E. P., Oyama, L. M., Santos, R. V, & Pimentel, G. D. (2012). Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease, 11(1), 67. https://doi.org/10.1186/1476-511X-11-67

Tesfaw, A. (2023). The current trends of bioethanol production from cheese whey using yeasts: biological and economical perspectives. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1183035

Tian, M., Cheng, J., Wang, H., Xie, Q., Wei, Q., & Guo, M. (2022). Effects of polymerized goat milk whey protein on physicochemical properties and microstructure of recombined goat milk yogurt. Journal of Dairy Science, 105(6), 4903–4914. https://doi.org/10.3168/jds.2021-21581

Tița, M. A., Moga, V.-M., Constantinescu, M. A., Bătușaru, C. M., & Tița, O. (2024). Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy. Recycling, 9(5), 79. https://doi.org/10.3390/recycling9050079

Tsimitri, P., Michailidis, A., Loizou, E., Mantzouridou, F. T., Gkatzionis, K., Mugampoza, E., & Nastis, S. A. (2021). Novel Foods and Neophobia: Evidence from Greece, Cyprus, and Uganda. Resources, 11(1), 2. https://doi.org/10.3390/resources11010002

Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024

Wang, G., & Guo, M. (2014). Property and storage stability of whey protein‐sucrose based safe paper glue. Journal of Applied Polymer Science, 131(1). https://doi.org/10.1002/app.39710

Wen‐qiong, W., Ji‐yang, Z., Qian, Y., & Jianju, L. (2021). The effect of composite enzyme catalysis whey protein cross‐linking on filtration performance. Food Science & Nutrition, 9(6), 3078–3090. https://doi.org/10.1002/fsn3.2265

Wenten, I. G., & Khoiruddin. (2016). Reverse osmosis applications: Prospect and challenges. Desalination, 391, 112–125. https://doi.org/10.1016/j.desal.2015.12.011

Wherry, B., Barbano, D. M., & Drake, M. A. (2019). Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. Journal of Dairy Science, 102(10), 8768–8784. https://doi.org/10.3168/jds.2019-16247

Yang, R., Bai, T., Yang, F., Yan, Y., Wu, Y., Meng, X., Gao, J., Hu, C., Li, X., & Chen, H. (2025). Polyphenol oxidase cross-linking enhances whey protein-induced systemic food allergy by regulating miRNA in CD4 + T cells. Food & Function, 16(2), 487–498. https://doi.org/10.1039/D4FO05284F

Yaşar, K., & Bozdogan, A. (2018). Effect of The Use of Different Whey Proteins on Some Properties of Sahlep Beverage Prepared from Functional Sahlep Powder. Turkish Journal of Agriculture - Food Science and Technology, 6(5), 520–523. https://doi.org/10.24925/turjaf.v6i5.520-523.1590

Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review. International Journal of Food Science & Technology, 43(3), 406–415. https://doi.org/10.1111/j.1365-2621.2006.01454.x

Zamani, H., Zamani, S., Zhang, Z., & Abbaspourrad, A. (2020). Exceptional colloidal stability of acidified whey protein beverages stabilized by soybean soluble polysaccharide. Journal of Food Science, 85(4), 989–997. https://doi.org/10.1111/1750-3841.15041

Zandona, E., Blažić, M., & Režek Jambrak, A. (2021). Whey Utilisation: Sustainable Uses and Environmental Approach. Food Technology and Biotechnology, 59(2), 147–161. https://doi.org/10.17113/ftb.59.02.21.6968

Zeng, X., Wang, Y., Yang, S., Liu, Y., Li, X., & Liu, D. (2024). The functionalities and applications of whey/whey protein in fermented foods: a review. Food Science and Biotechnology, 33(4), 769–790. https://doi.org/10.1007/s10068-023-01460-5

Zhang, M. T., Jo, Y., Lopetcharat, K., & Drake, M. A. (2020). Comparison of a central location test versus a home usage test for consumer perception of ready-to-mix protein beverages. Journal of Dairy Science, 103(4), 3107–3124. https://doi.org/10.3168/jds.2019-17260

Zhou, X., Tian, X., Song, L., Luo, L., Ma, Z., & Zhang, F. (2023). Donkey whey protein and peptides regulate gut microbiota community and physiological functions of D‐galactose‐induced aging mice. Food Science & Nutrition, 11(2), 752–764. https://doi.org/10.1002/fsn3.3111

Ziolkowski, A. Y., Şenol, N., Aslankoç, R., & Samur, G. (2024). Whey protein supplementation reduced the liver damage scores of rats fed with a high fat-high fructose diet. PLOS ONE, 19(4), e0301012. https://doi.org/10.1371/journal.pone.0301012

Zokaityte, E., Cernauskas, D., Klupsaite, D., Lele, V., Starkute, V., Zavistanaviciute, P., Ruzauskas, M., Gruzauskas, R., Juodeikiene, G., Rocha, J. M., Bliznikas, S., Viskelis, P., Ruibys, R., & Bartkiene, E. (2020). Bioconversion of Milk Permeate with Selected Lactic Acid Bacteria Strains and Apple By-Products into Beverages with Antimicrobial Properties and Enriched with Galactooligosaccharides. Microorganisms, 8(8), 1182. https://doi.org/10.3390/microorganisms8081182

Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749–2764. https://doi.org/10.1007/s00253-020-10408-2

Downloads

Publicado

2025-08-19

Como Citar

Mendoza-Flores, L. A., Pérez Flores, J. G., García-Curiel, L., Cruz-Guerrero, A. E., Pérez-Escalante, E., Contreras-López, E., & González-Olivares, L. G. (2025). Soro de leite como ingrediente funcional na indústria alimentícia: um estudo bibliométrico sobre seu potencial e inovação . Food Science Today, 4(1), 53–70. https://doi.org/10.58951/fstoday.2025.007

Edição

Seção

Artigo de Revisão
Loading...