Bioactive collagen peptides: bibliometric approach and market trends for aquatic sources
DOI:
https://doi.org/10.58951/fstoday.2023.17Keywords:
Aquatic collagen, bioactive hydrolysate, functional foods, by-product processing, bibliometric analysisAbstract
The development of the collagen peptides industry is associated with new consumption trends among the population, projected to reach a value of 795 million USD by 2025. Given the relevance of the topic, the present work provides an overview of collagen, its sources, applications, as well as the properties and bioactivities of the peptides formed from its hydrolysis. In addition, a bibliometric analysis was performed to highlight a global overview of publication trends, co-authorship, and co-occurrence of keywords. Bibliometric data were obtained from the Web of Science platform using the descriptors “marine collagen peptide,” “marine collagen peptides,” “aquatic collagen peptide,” “aquatic collagen peptides,” “marine collagen hydrolysate,” “marine collagen hydrolysates,” “aquatic collagen hydrolysate” and “aquatic collagen hydrolysates” and the Boolean operator “OR,” to include terms that cover the possible variations used in the search. From the results obtained, articles and reviews published between 2000 and 2021 were selected. From the analysis of the data collected, it became evident the still relatively recent nature of the research on collagen peptides derived from aquatic organisms and the role of countries in Asia and Europe as leaders in the segment. The co-authorship analysis reveals that the collaboration network between authors/institutions is still scarce and strongly restricted to researchers/institutions in the same region. The co-occurrence analysis reveals that most of the works are related to the health area, highlighting its potential in the prevention/treatment of diseases. In view of the results obtained, it is expected that the growth of the production and commercial branch of these peptides will be accompanied by the amplification of collaboration between authors and institutions from different territories, establishing a global network of partnerships.
References
Abdillahi, S. M., Maaß, T., Kasetty, G., Strömstedt, A. A., Baumgarten, M., Tati, R., Nordin, S. L., Walse, B., Wagener, R., Schmidtchen, A., & Mörgelin, M. (2018). Collagen VI contains multiple host defense peptides with potent in vivo activity. The Journal of Immunology, 201(3), 1007–1020. https://doi.org/10.4049/jimmunol.1700602 DOI: https://doi.org/10.4049/jimmunol.1700602
Ahmed, M., Verma, A. K., & Patel, R. (2020). Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 100315. https://doi.org/10.1016/j.scp.2020.100315 DOI: https://doi.org/10.1016/j.scp.2020.100315
Ahmed, R., & Chun, B.-S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. The Journal of Supercritical Fluids, 141, 88–96. https://doi.org/10.1016/j.supflu.2018.03.006 DOI: https://doi.org/10.1016/j.supflu.2018.03.006
Ahn, C., Ryan, B. J., Schleh, M. W., Varshney, P., Ludzki, A. C., Gillen, J. B., Van Pelt, D. W., Pitchford, L. M., Howton, S. M., Rode, T., Hummel, S. L., Burant, C. F., Little, J. P., & Horowitz, J. F. (2022). Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss. The Journal of Physiology, 600(9), 2127–2146. https://doi.org/10.1113/jp282371 DOI: https://doi.org/10.1113/JP282371
Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D., Morita, T., Morioka, K., & Adachi, K. (2020). Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chemistry, 329, 126775. https://doi.org/10.1016/j.foodchem.2020.126775 DOI: https://doi.org/10.1016/j.foodchem.2020.126775
Ali, A. M. M., Kishimura, H., & Benjakul, S. (2018). Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus jullieni) as affected by ultrasonication. Process Biochemistry, 66, 237–244. https://doi.org/10.1016/j.procbio.2018.01.003 DOI: https://doi.org/10.1016/j.procbio.2018.01.003
Behl, A., Jayawardena, N., Pereira, V., Islam, N., Giudice, M. D., & Choudrie, J. (2022). Gamification and e-learning for young learners: A systematic literature review, bibliometric analysis, and future research agenda. Technological Forecasting and Social Change, 176, 121445. https://doi.org/10.1016/j.techfore.2021.121445 DOI: https://doi.org/10.1016/j.techfore.2021.121445
Bretas, V. P. G., & Alon, I. (2021). Franchising research on emerging markets: Bibliometric and content analyses. Journal of Business Research, 133, 51–65. https://doi.org/10.1016/j.jbusres.2021.04.067 DOI: https://doi.org/10.1016/j.jbusres.2021.04.067
Chen, J., Chao, F., Mu, X., Jiang, J., Zhu, Q., Ren, J., Guo, Y., & Lou, Y. (2019). ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. Inorganic Chemistry Communications, 102, 25–29. https://doi.org/10.1016/j.inoche.2019.02.008 DOI: https://doi.org/10.1016/j.inoche.2019.02.008
Chen, J., Sun, S., Li, Y., & Liu, R. (2021). Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. LWT, 139, 110502. https://doi.org/10.1016/j.lwt.2020.110502 DOI: https://doi.org/10.1016/j.lwt.2020.110502
Chen, Y.-P., Liang, C.-H., Wu, H.-T., Pang, H.-Y., Chen, C., Wang, G.-H., & Chan, L.-P. (2018). Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. Journal of Food Science and Technology, 55(6), 2310–2317. https://doi.org/10.1007/s13197-018-3148-4 DOI: https://doi.org/10.1007/s13197-018-3148-4
Das, A., Abas, M., Biswas, N., Banerjee, P., Ghosh, N., Rawat, A., Khanna, S., Roy, S., & Sen, C. K. (2019). A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Scientific Reports, 9, 14293. https://doi.org/10.1038/s41598-019-49435-z DOI: https://doi.org/10.1038/s41598-019-49435-z
Dave, D., Liu, Y., Clark, L., Dave, N., Trenholm, S., & Westcott, J. (2019). Availability of marine collagen from Newfoundland fisheries and aquaculture waste resources. Bioresource Technology Reports, 7, 100271. https://doi.org/10.1016/j.biteb.2019.100271 DOI: https://doi.org/10.1016/j.biteb.2019.100271
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022 DOI: https://doi.org/10.1016/j.foodres.2014.06.022
FAO. (2018). The state of world fisheries and aquaculture 2018: Meeting the sustainable development goals. Rome. Food and Agriculture Organization of the United Nations.
Faruk, M., Rahman, M., & Hasan, S. (2021). How digital marketing evolved over time: a bibliometric analysis on Scopus database. Heliyon, 7(12), e08603. https://doi.org/10.1016/j.heliyon.2021.e08603 DOI: https://doi.org/10.1016/j.heliyon.2021.e08603
Felician, F. F., Yu, R.-H., Li, M.-Z., Li, C.-J., Chen, H.-Q., Jiang, Y., Tang, T., Qi, W.-Y., & Xu, H.-M. (2019). The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chinese Journal of Traumatology, 22(1), 12–20. https://doi.org/10.1016/j.cjtee.2018.10.004 DOI: https://doi.org/10.1016/j.cjtee.2018.10.004
Ferrario, C., Leggio, L., Leone, R., Di Benedetto, C., Guidetti, L., Coccè, V., Ascagni, M., Bonasoro, F., La Porta, C. A. M., Candia Carnevali, M. D., & Sugni, M. (2017). Marine-derived collagen biomaterials from echinoderm connective tissues. Marine Environmental Research, 128, 46–57. https://doi.org/10.1016/j.marenvres.2016.03.007 DOI: https://doi.org/10.1016/j.marenvres.2016.03.007
Fuggetta, M. P., Zonfrillo, M., Villivà, C., Bonmassar, E., & Ravagnan, G. (2019). Inflammatory microenvironment and adipogenic differentiation in obesity: the inhibitory effect of theobromine in a model of human obesity in vitro. Mediators of Inflammation, 2019, 1–10. https://doi.org/10.1155/2019/1515621 DOI: https://doi.org/10.1155/2019/1515621
Global Market Insights. (2022). Fish collagen peptides market share: Industry report 2027. Global Market Insights Inc. Accessed on October 26, 2022. Available at: https://www.gminsights.com/industry-analysis/fish-collagen-peptides-market.
Gómez, J. C., Ena, J., Arévalo Lorido, J. C., Seguí Ripoll, J. M., Carrasco-Sánchez, F. J., Gómez-Huelgas, R., Pérez Soto, M. I., Delgado Lista, J., & Pérez Martínez, P. (2021). Obesity is a chronic disease. Positioning statement of the Diabetes, Obesity and Nutrition Workgroup of the Spanish Society of Internal Medicine (SEMI) for an approach centred on individuals with obesity. Revista Clínica Española (English Edition), 221(9), 509–516. https://doi.org/10.1016/j.rceng.2020.06.013 DOI: https://doi.org/10.1016/j.rceng.2020.06.013
Gonçalves, M. C. P., Kieckbusch, T. G., Perna, R. F., Fujimoto, J. T., Morales, S. A. V., & Romanelli, J. P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 76, 95–110. https://doi.org/10.1016/j.procbio.2018.09.016 DOI: https://doi.org/10.1016/j.procbio.2018.09.016
Graça, M. F. P., Miguel, S. P., Cabral, C. S. D., & Correia, I. J. (2020). Hyaluronic acid—based wound dressings: A review. Carbohydrate Polymers, 241, 116364. https://doi.org/10.1016/j.carbpol.2020.116364 DOI: https://doi.org/10.1016/j.carbpol.2020.116364
Guo, L., Harnedy, P. A., O’Keeffe, M. B., Zhang, L., Li, B., Hou, H., & FitzGerald, R. J. (2015). Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry, 173, 536–542. https://doi.org/10.1016/j.foodchem.2014.10.055 DOI: https://doi.org/10.1016/j.foodchem.2014.10.055
Han, G., & Ceilley, R. (2017). Chronic wound healing: A review of current management and treatments. Advances in Therapy, 34(3), 599–610. https://doi.org/10.1007/s12325-017-0478-y DOI: https://doi.org/10.1007/s12325-017-0478-y
Hong, H., Fan, H., Roy, B. C., & Wu, J. (2021). Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chemistry, 352, 129355. https://doi.org/10.1016/j.foodchem.2021.129355 DOI: https://doi.org/10.1016/j.foodchem.2021.129355
Huang, C., Kuo, J., Wu, S., & Tsai, H. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chemistry, 190, 997–1006. https://doi.org/10.1016/j.foodchem.2015.06.066 DOI: https://doi.org/10.1016/j.foodchem.2015.06.066
Huang, C.Y., Wu, C.-H., Yang, J.-I., Li, Y.-H., & Kuo, J.-M. (2015). Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. Journal of Food and Drug Analysis, 23(4), 671–678. https://doi.org/10.1016/j.jfda.2014.06.009 DOI: https://doi.org/10.1016/j.jfda.2014.06.009
Jeevithan, E., Bao, B., Zhang, J., Hong, S., & Wu, W. (2015). Purification, characterization and antioxidant properties of low molecular weight collagenous polypeptide (37 kDa) prepared from whale shark cartilage (Rhincodon typus). Journal of Food Science and Technology, 52(10), 6312–6322. https://doi.org/10.1007/s13197-015-1715-5 DOI: https://doi.org/10.1007/s13197-015-1715-5
Jiang, C., Bhat, C. R., & Lam, W. H. K. (2020). A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019). Transportation Research Part B: Methodological, 138, 268–291. https://doi.org/10.1016/j.trb.2020.05.016 DOI: https://doi.org/10.1016/j.trb.2020.05.016
Kwon, J. H., & Powderly, W. G. (2021). The post-antibiotic era is here. Science, 373(6554), 471–471. https://doi.org/10.1126/science.abl5997 DOI: https://doi.org/10.1126/science.abl5997
Lakra, R., Kiran, M. S., & Sai Korrapati, P. (2022). Collagen scaffold reinforced with furfural for wound healing application. Materials Letters, 315, 131956. https://doi.org/10.1016/j.matlet.2022.131956 DOI: https://doi.org/10.1016/j.matlet.2022.131956
Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M.-C., Barkia, A., & Nasri, M. (2015). Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics, 128, 458–468. https://doi.org/10.1016/j.jprot.2015.05.007 DOI: https://doi.org/10.1016/j.jprot.2015.05.007
Lázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P. K., Kintses, B., Csörgő, B., Nyerges, Á., Györkei, Á., Kincses, A., Dér, A., Walter, F. R., Deli, M. A., Urbán, E., Hegedűs, Z., Olajos, G., & Méhi, O. (2018). Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 3(6), 718–731. https://doi.org/10.1038/s41564-018-0164-0 DOI: https://doi.org/10.1038/s41564-018-0164-0
Lee, E. J., Hur, J., Ham, S. A., Jo, Y., Lee, S., Choi, M.-J., & Seo, H. G. (2017). Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. International Journal of Biological Macromolecules, 104, 281–286. https://doi.org/10.1016/j.ijbiomac.2017.05.151 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.151
Li, C., Song, W., Wu, J., Lu, M., Zhao, Q., Fang, C., Wang, W., Park, Y.-D., & Qian, G.-Y. (2020). Thermal stable characteristics of acid- and pepsin-soluble collagens from the carapace tissue of Chinese soft-shelled turtle (Pelodiscus sinensis). Tissue and Cell, 67, 101424. https://doi.org/10.1016/j.tice.2020.101424 DOI: https://doi.org/10.1016/j.tice.2020.101424
Li, P.H., Lu, W.-C., Chan, Y.-J., Ko, W.-C., Jung, C.-C., Le Huynh, D. T., & Ji, Y.-X. (2020). Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture, 515, 734590. https://doi.org/10.1016/j.aquaculture.2019.734590 DOI: https://doi.org/10.1016/j.aquaculture.2019.734590
Li, W., Kobayashi, T., Meng, D., Miyamoto, N., Tsutsumi, N., Ura, K., & Takagi, Y. (2021). Free radical scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-products of mottled skate processing. Food Bioscience, 41, 100991. https://doi.org/10.1016/j.fbio.2021.100991 DOI: https://doi.org/10.1016/j.fbio.2021.100991
Lin, S., Hu, X., Li, L., Yang, X., Chen, S., Wu, Y., & Yang, S. (2021). Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. LWT, 149, 111796. https://doi.org/10.1016/j.lwt.2021.111796 DOI: https://doi.org/10.1016/j.lwt.2021.111796
Lin, X., Chen, Y., Jin, H., Zhao, Q., Liu, C., Li, R., Yu, F., Chen, Y., Huang, F., Yang, Z., Ding, G., & Tang, Y. (2019). Collagen extracted from bigeye tuna (Thunnus obesus) skin by isoelectric precipitation: physicochemical properties, proliferation, and migration activities. Marine Drugs, 17(5), 261. https://doi.org/10.3390/md17050261 DOI: https://doi.org/10.3390/md17050261
Lipoeto, N. I., Geok Lin, K., & Angeles-Agdeppa, I. (2012). Food consumption patterns and nutrition transition in South-East Asia. Public Health Nutrition, 16(9), 1637–1643. https://doi.org/10.1017/s1368980012004569 DOI: https://doi.org/10.1017/S1368980012004569
Luo, J., Zhou, Z., Yao, X., & Fu, Y. (2020). Mineral-chelating peptides derived from fish collagen: Preparation, bioactivity and bioavailability. LWT, 134, 110209. https://doi.org/10.1016/j.lwt.2020.110209 DOI: https://doi.org/10.1016/j.lwt.2020.110209
Luong, H. X., Thanh, T. T., & Tran, T. H. (2020). Antimicrobial peptides – Advances in development of therapeutic applications. Life Sciences, 260, 118407. https://doi.org/10.1016/j.lfs.2020.118407 DOI: https://doi.org/10.1016/j.lfs.2020.118407
Markets And Markets. (2022). Collagen peptides market global outlook, trends, and forecast to 2026. Available at: https://www.marketsandmarkets.com/Market-Reports/collagen-peptide-market-248590980.html (Accessed: May 26, 2022).
Masuda, H., Aung, M. S., Kobayashi, T., & Nishizawa, N. K. (2020). Iron biofortification: The gateway to overcoming hidden hunger. The Future of Rice Demand: Quality beyond Productivity, 149–177. https://doi.org/10.1007/978-3-030-37510-2_7 DOI: https://doi.org/10.1007/978-3-030-37510-2_7
Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C., & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. Journal of Pharmaceutical Sciences, 103(8), 2211–2230. https://doi.org/10.1002/jps.24068 DOI: https://doi.org/10.1002/jps.24068
Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. https://doi.org/10.3390/ma12132176 DOI: https://doi.org/10.3390/ma12132176
Moholkar, D. N., Sadalage, P. S., Peixoto, D., Paiva-Santos, A. C., & Pawar, K. D. (2021). Recent advances in biopolymer-based formulations for wound healing applications. European Polymer Journal, 160, 110784. https://doi.org/10.1016/j.eurpolymj.2021.110784 DOI: https://doi.org/10.1016/j.eurpolymj.2021.110784
Montero, P., Mosquera, M., Marín-Peñalver, D., Alemán, A., Martínez-Álvarez, Ó., & Gómez-Guillén, M. C. (2019). Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. Journal of Food Engineering, 244, 47–54. https://doi.org/10.1016/j.jfoodeng.2018.09.024 DOI: https://doi.org/10.1016/j.jfoodeng.2018.09.024
Mordor Intelligence. (2022). Collagen Peptide Market | 2022-2027 | Industry Share, Size, Analysis. Accessed on May 16, 2022. Available at: https://www.mordorintelligence.com/industry-reports/collagen-peptide-market.
Mörschbächer, A. P., & Granada, C. E. (2022). Mapping the worldwide knowledge of antimicrobial substances produced by Lactobacillus spp.: A bibliometric analysis. Biochemical Engineering Journal, 180, 108343. https://doi.org/10.1016/j.bej.2022.108343 DOI: https://doi.org/10.1016/j.bej.2022.108343
Mosquera, M., Giménez, B., Ramos, S., López-Caballero, M. E., Gómez-Guillén, M. del C., & Montero, P. (2014). Antioxidant, ACE-Inhibitory, and antimicrobial activities of peptide fractions obtained from dried giant squid tunics. Journal of Aquatic Food Product Technology, 25(3), 444–455. https://doi.org/10.1080/10498850.2013.819543 DOI: https://doi.org/10.1080/10498850.2013.819543
Murdayanti, Y., & Khan, M. N. A. A. (2021). The development of internet financial reporting publications: A concise of bibliometric analysis. Heliyon, 7(12), e08551. https://doi.org/10.1016/j.heliyon.2021.e08551 DOI: https://doi.org/10.1016/j.heliyon.2021.e08551
Nakchum, L., & Kim, S. M. (2016). Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Preparative Biochemistry & Biotechnology, 46(2), 123–130. https://doi.org/10.1080/10826068.2014.995808 DOI: https://doi.org/10.1080/10826068.2014.995808
Nešović, K., Janković, A., Radetić, T., Vukašinović-Sekulić, M., Kojić, V., Živković, L., Perić-Grujić, A., Rhee, K. Y., & Mišković-Stanković, V. (2019). Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. European Polymer Journal, 121, 109257. https://doi.org/10.1016/j.eurpolymj.2019.109257 DOI: https://doi.org/10.1016/j.eurpolymj.2019.109257
Nirmala, C., Bisht, M. S., Bajwa, H. K., & Santosh, O. (2018). Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends in Food Science & Technology, 77, 91–99. https://doi.org/10.1016/j.tifs.2018.05.003 DOI: https://doi.org/10.1016/j.tifs.2018.05.003
Nuñez, S. M., Guzmán, F., Valencia, P., Almonacid, S., & Cárdenas, C. (2020). Collagen as a source of bioactive peptides: A bioinformatics approach. Electronic Journal of Biotechnology, 48, 101–108. https://doi.org/10.1016/j.ejbt.2020.09.009 DOI: https://doi.org/10.1016/j.ejbt.2020.09.009
Nurilmala, M., Suryamarevita, H., Husein Hizbullah, H., Jacoeb, A. M., & Ochiai, Y. (2021). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021.09.056 DOI: https://doi.org/10.1016/j.sjbs.2021.09.056
Olatunji, O. (2020). Aquatic Biopolymers. In Springer Series on Polymer and Composite Materials. Springer International Publishing. https://doi.org/10.1007/978-3-030-34709-3 DOI: https://doi.org/10.1007/978-3-030-34709-3_16
Oliveira, V. de M., Assis, C. R. D., Costa, B. A. M., Neri, R. C. A., Monte, F. T. D., Freitas, H. M. S. C. V., França, R. C. P., Santos, J. F., Bezerra, R. S., & Porto, A. L. F. (2021). Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. Journal of Molecular Structure, 1224, 129023. https://doi.org/10.1016/j.molstruc.2020.129023 DOI: https://doi.org/10.1016/j.molstruc.2020.129023
Pan, X., Zhao, Y.-Q., Hu, F.-Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220–230. https://doi.org/10.1016/j.jff.2016.06.008 DOI: https://doi.org/10.1016/j.jff.2016.06.008
Park, S., & Jo, Y. (2019). Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochemistry, 83, 176–182. https://doi.org/10.1016/j.procbio.2019.05.015 DOI: https://doi.org/10.1016/j.procbio.2019.05.015
Patil, P. P., Reagan, M. R., & Bohara, R. A. (2020). Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 164, 4613–4627. https://doi.org/10.1016/j.ijbiomac.2020.08.041 DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.041
Pfalzgraff, A., Brandenburg, K., & Weindl, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, 281. https://doi.org/10.3389/fphar.2018.00281 DOI: https://doi.org/10.3389/fphar.2018.00281
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482 DOI: https://doi.org/10.3934/microbiol.2018.3.482
Salvatore, L., Gallo, N., Natali, M. L., Campa, L., Lunetti, P., Madaghiele, M., Blasi, F. S., Corallo, A., Capobianco, L., & Sannino, A. (2020). Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering: C, 113, 110963. https://doi.org/10.1016/j.msec.2020.110963 DOI: https://doi.org/10.1016/j.msec.2020.110963
Shang, Y., Yao, S., Qiao, X., Wang, Z., Zhao, X., Huang, Z., Gu, Q., Wang, N., & Peng, C. (2021). Evaluations of marine collagen peptides from tilapia skin on experimental oral ulcer model of mice. Materials Today Communications, 26, 101893. https://doi.org/10.1016/j.mtcomm.2020.101893 DOI: https://doi.org/10.1016/j.mtcomm.2020.101893
Sierra, L., Fan, H., Zapata, J., & Wu, J. (2021). Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT, 146, 111631. https://doi.org/10.1016/j.lwt.2021.111631 DOI: https://doi.org/10.1016/j.lwt.2021.111631
Sierra-Lopera, L. M., & Zapata-Montoya, J. E. (2021). Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnology Reports, 30, e00611. https://doi.org/10.1016/j.btre.2021.e00611 DOI: https://doi.org/10.1016/j.btre.2021.e00611
Song, Y., Fu, Y., Huang, S., Liao, L., Wu, Q., Wang, Y., Ge, F., & Fang, B. (2021). Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chemistry, 349, 129143. https://doi.org/10.1016/j.foodchem.2021.129143 DOI: https://doi.org/10.1016/j.foodchem.2021.129143
Souza, G. S., Jesus Sonego, L., Santos Mundim, A. C. S., Moraes, J. M., Sales-Campos, H., & Lorenzón, E. N. (2022). Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides, 148, 170707. https://doi.org/10.1016/j.peptides.2021.170707 DOI: https://doi.org/10.1016/j.peptides.2021.170707
Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168, 115–123. https://doi.org/10.1016/j.foodchem.2014.07.027 DOI: https://doi.org/10.1016/j.foodchem.2014.07.027
Välimaa, A.-L., Mäkinen, S., Mattila, P., Marnila, P., Pihlanto, A., Mäki, M., & Hiidenhovi, J. (2019). Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 3(4), 209–226. https://doi.org/10.1093/fqsafe/fyz024 DOI: https://doi.org/10.1093/fqsafe/fyz024
Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., & Sadiku, E. R. (2020). Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate Polymers, 236, 116025. https://doi.org/10.1016/j.carbpol.2020.116025 DOI: https://doi.org/10.1016/j.carbpol.2020.116025
Wang, C., Hong, T., Cui, P., Wang, J., & Xia, J. (2021). Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews, 175, 113818. https://doi.org/10.1016/j.addr.2021.05.028 DOI: https://doi.org/10.1016/j.addr.2021.05.028
Wei, X., Liu, Y., Luo, Y., Shen, Z., Wang, S., Li, M., & Zhang, L. (2021). Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. International Journal of Biological Macromolecules, 187, 462–470. https://doi.org/10.1016/j.ijbiomac.2021.07.082 DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.082
Wimley, W. C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology, 5(10), 905–917. https://doi.org/10.1021/cb1001558 DOI: https://doi.org/10.1021/cb1001558
Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., & He, H. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry, 248, 346–352. https://doi.org/10.1016/j.foodchem.2017.12.035 DOI: https://doi.org/10.1016/j.foodchem.2017.12.035
Wu, W., Yang, Y., Sun, N., Bao, Z., & Lin, S. (2020). Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Research International, 131, 108976. https://doi.org/10.1016/j.foodres.2020.108976 DOI: https://doi.org/10.1016/j.foodres.2020.108976
Yang, T., Zhang, K., Li, B., & Hou, H. (2018). Effects of oral administration of peptides with low molecular weight from Alaska pollock (Theragra chalcogramma) on cutaneous wound healing. Journal of Functional Foods, 48, 682–691. https://doi.org/10.1016/j.jff.2018.08.006 DOI: https://doi.org/10.1016/j.jff.2018.08.006
Zamorano-Apodaca, J. C., García-Sifuentes, C. O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S. M., & Lugo-Sánchez, M. E. (2020). Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chemistry, 331, 127350. https://doi.org/10.1016/j.foodchem.2020.127350 DOI: https://doi.org/10.1016/j.foodchem.2020.127350
Zhang, H., Yang, Y., & Zhou, Z. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17(1), 256–263. https://doi.org/10.1016/s2095-3119(17)61664-2 DOI: https://doi.org/10.1016/S2095-3119(17)61664-2
Zhang, Y., Ding, X., & Li, M. (2021). Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chemistry, 349, 129101. https://doi.org/10.1016/j.foodchem.2021.129101 DOI: https://doi.org/10.1016/j.foodchem.2021.129101
Zhao, X., Zhang, X., & Liu, D. (2021). Collagen peptides and the related synthetic peptides: A review on improving skin health. Journal of Functional Foods, 86, 104680. https://doi.org/10.1016/j.jff.2021.104680 DOI: https://doi.org/10.1016/j.jff.2021.104680
Zhu, L., Xie, Y., Wen, B., Ye, M., Liu, Y., Imam, K. M. S. U., Cai, H., Zhang, C., Wang, F., & Xin, F. (2020). Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods, 64, 103697. https://doi.org/10.1016/j.jff.2019.103697 DOI: https://doi.org/10.1016/j.jff.2019.103697
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Beatriz de Aquino Marques da Costa, Ana Lúcia Figueiredo Porto, Vagne de Melo Oliveira, Tatiana Souza Porto

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.