Ultrasound-assisted extraction optimization of polyphenols from jambolão (Syzygium cumini) fruit and their in vitro antioxidant capacity
DOI:
https://doi.org/10.58951/fstoday.v1i1.13Keywords:
bioactive compounds, ethanol, FRAP, DPPH, ABTS, response surface methodologyAbstract
Syzygium cumini fruit is a rich source of excellent bioactive compounds, including polyphenols and flavonoids with high antioxidant potential and pharmacological properties. Yet, this plant’s improvement of the extraction yield of total polyphenol content (TPC) and antioxidant potential has never been inspected in depth. The objective of this study was to use a 23 factorial design with three repetitions of the central point to investigate the influence of combined parameters such as ultrasonication, solvent concentration, time, and temperature and to employ RSM to optimize the extraction of phenolic compounds from jambolão at three ripeness stages (unripe, mid-ripe and ripe) and maximize their antioxidant activity. The best conditions of the variables for increasing the yield, total phenolic and antioxidant capacity were obtained with 30 % ethanol for 68.4 min, at 39.2 °C for unripe jambolão, with 30 % ethanol for 30 min, at 47.2 °C for mid-ripe and with 90 % ethanol for 30 min, at 60 °C for ripe fruit. The yield, TPC, DPPH, ABTS and FRAP decreased during fruit ripeness. For such optimized conditions of ultrasound-assisted extraction, the highest yield and TPC were experimentally determined for the unripe stage at 9.01 % and 549.16 mg GAE/100g, respectively, with an antioxidant capacity of 45.19 mMol TE/100 g DPPH, 68.20 mMol TE/100 g ABTS and 72.30 mMol TE/100 g FRAP and agreed with the obtained model values. This study showed that it is possible to obtain bioactive-rich extracts from jambolão using experimental design to improve the extraction process.
References
Al-Yafeai, A., Bellstedt, P., & Böhm, V. (2018). Bioactive compounds and antioxidant capacity of rosa rugosa depending on degree of ripeness. Antioxidants, 7(10), 1–16. https://doi.org/10.3390/antiox7100134 DOI: https://doi.org/10.3390/antiox7100134
Ávila, S., Zalamanski, S., Tanikawa, L. M., Kruger, C. C. H., & Ferreira, S. M. R. (2022). Influence of Cooking Methods on In Vitro Bioaccessibility of Phenolics, Flavonoids, and Antioxidant Activity of Red Cabbage. Plant Foods for Human Nutrition, 0123456789. https://doi.org/10.1007/s11130-022-01027-5 DOI: https://doi.org/10.1007/s11130-022-01027-5
Azima, A. M. S., Noriham, A., & Manshoor, N. (2017). Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 38, 232–241. https://doi.org/10.1016/j.jff.2017.09.018 DOI: https://doi.org/10.1016/j.jff.2017.09.018
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 DOI: https://doi.org/10.1006/abio.1996.0292
Bhadange, Y. A., Saharan, V. K., Sonawane, S. H., & Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chemical Engineering and Processing - Process Intensification, 181(April), 109147. https://doi.org/10.1016/j.cep.2022.109147 DOI: https://doi.org/10.1016/j.cep.2022.109147
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Cruz, T. M., Santos, J. S., do Carmo, M. A. V., Hellström, J., Pihlava, J. M., Azevedo, L., Granato, D., & Marques, M. B. (2021). Extraction optimization of bioactive compounds from ora-pro-nobis (Pereskia aculeata Miller) leaves and their in vitro antioxidant and antihemolytic activities. Food Chemistry, 361(May). https://doi.org/10.1016/j.foodchem.2021.130078 DOI: https://doi.org/10.1016/j.foodchem.2021.130078
da Silva, K. M., Zielinski, A. A. F., Benvenutti, L., Bortolini, D. G., Zardo, D. M., Beltrame, F. L., Nogueira, A., & Alberti, A. (2019). Effect of fruit ripening on bioactive compounds and antioxidant capacity of apple beverages. Food Science and Technology (Brazil), 39(2), 294–300. https://doi.org/10.1590/fst.25317 DOI: https://doi.org/10.1590/fst.25317
Faria, A. F., Marques, M. C., & Mercadante, A. Z. (2011). Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chemistry, 126(4), 1571–1578. https://doi.org/10.1016/j.foodchem.2010.12.007 DOI: https://doi.org/10.1016/j.foodchem.2010.12.007
Goltz, C., Ávila, S., Barbieri, J. B., Igarashi-Mafra, L., & Mafra, M. R. (2018). Ultrasound-assisted extraction of phenolic compounds from Macela (Achyrolcine satureioides) extracts. Industrial Crops and Products, 115, 227–234. https://doi.org/10.1016/j.indcrop.2018.02.013 DOI: https://doi.org/10.1016/j.indcrop.2018.02.013
Ismandari, T., Kumalaningsih, S., Wijana, S., & Mustaniroh, S. A. ul. (2020). Optimization of bioactive compound extraction from rose myrtle fruit (Rhodomyrtus tomentosa, (W.Ait), Myrtaceae) as the antioxidant source. Scientific World Journal, 2020, 1–8. https://doi.org/10.1155/2020/9105847 DOI: https://doi.org/10.1155/2020/9105847
Liu, Y., She, X. R., Huang, J. Bin, Liu, M. C., & Zhan, M. E. (2018). Ultrasonic-extraction of phenolic compounds from Phyllanthus urinaria: Optimization model and antioxidant activity. Food Science and Technology (Brazil), 38, 286–293. https://doi.org/10.1590/1678-457x.21617 DOI: https://doi.org/10.1590/1678-457x.21617
Mahindrakar, K. V., & Rathod, V. K. (2020). Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity. Chemical Engineering and Processing - Process Intensification, 149(December 2019), 107841. https://doi.org/10.1016/j.cep.2020.107841 DOI: https://doi.org/10.1016/j.cep.2020.107841
Nekkaa, A., Benaissa, A., Lalaouna, A. E. D., Mutelet, F., & Canabady-Rochelle, L. (2021). Optimization of the extraction process of bioactive compounds from Rhamnus alaternus leaves using Box-Behnken experimental design. Journal of Applied Research on Medicinal and Aromatic Plants, 25(July), 100345. https://doi.org/10.1016/j.jarmap.2021.100345 DOI: https://doi.org/10.1016/j.jarmap.2021.100345
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Rydlewski, A. A., de Morais, D. R., Rotta, E. M., Claus, T., Vagula, J. M., da Silva, M. C., Santos Junior, O. O., & Visentainer, J. V. (2017). Bioactive compounds, antioxidant capacity, and fatty acids in different parts of four unexplored fruits. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8401074 DOI: https://doi.org/10.1155/2017/8401074
Singlenton, V. L., Rossi, J. R. A. J., Singleton, V. L., & Rossi, J. R. A. J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144
Veber, J., Petrini, L. A., Andrade, L. B., & Siviero, J. (2015). Determinação dos compostos fenólicos e da capacidade antioxidante de extratos aquosos e etanólicos de Jambolão (Syzygium cumini L.). Revista Brasileira de Plantas Medicinais, 17(2), 267–273. https://doi.org/10.1590/1983-084X/12_181 DOI: https://doi.org/10.1590/1983-084X/12_181
Zielinski, A. A. F., Haminiuk, C. W. I., & Beta, T. (2016). Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC-DAD-Q-TOF-MS/MS. LWT - Food Science and Technology, 65, 897–907. https://doi.org/10.1016/j.lwt.2015.09.020 DOI: https://doi.org/10.1016/j.lwt.2015.09.020
Žlabur, J. Š., Žutić, I., Radman, S., Pleša, M., Brnčić, M., Barba, F. J., Rocchetti, G., Lucini, L., Lorenzo, J. M., Domínguez, R., Brnčić, S. R., Galić, A., & Voća, S. (2020). Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile (Matricaria chamomilla L.) Flowers. Molecules, 25(4). https://doi.org/10.3390/molecules25040810 DOI: https://doi.org/10.3390/molecules25040810
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Suelen Ávila, Polyanna Silveira Hornung, Claudia Carneiro Hecke Kruger, Sila Mary Rodrigues Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.