Peptídeos bioativos de colágeno: abordagem bibliométrica e tendências de mercado para fontes aquáticas
DOI:
https://doi.org/10.58951/fstoday.2023.17Palavras-chave:
Colágeno aquático, Hidrolisado bioativo, Alimentos funcionais, Processamento de subprodutos, Análise bibliométricaResumo
O desenvolvimento da indústria de peptídeos de colágeno está relacionado às novas tendências de consumo da população, com projeção de atingir o valor de 795 milhões de dólares até 2025. Dada a relevância do tema, o presente trabalho traz um panorama sobre o colágeno, suas fontes, e aplicações, assim como são discutidas as propriedades e bioatividades dos peptídeos formados a partir de sua hidrólise. Além disso, para mostrar uma visão global das tendências de publicação, co-autoria e co-ocorrência de palavras-chave, que foi realizada por uma análise bibliométrica. Os dados bibliométricos foram obtidos a partir da plataforma Web of Science, utilizando os descritores “marine collagen peptide”, “marine collagen peptides”, “aquatic collagen peptide”, “aquatic collagen peptides”, “marine collagen hydrolysate”, “marine collagen hydrolysates”, “aquatic collagen hydrolysate” e “aquatic collagen hydrolysates” e o operador booleano “OR”, para incluir termos que abranjam as possíveis variações utilizadas pelos autores na busca. A partir dos resultados obtidos, foram selecionados artigos e revisões publicados entre 2000 e 2021. A partir da análise dos dados coletados, ficou evidente o caráter ainda relativamente recente das pesquisas sobre peptídeos de colágeno derivados de organismos aquáticos e o papel de países da Ásia e da Europa como líderes no segmento. A análise da co-autoria revelou que a rede de colaboração entre autores/instituições ainda é escassa e fortemente restrita a pesquisadores/instituições da mesma região. A análise de co-ocorrência revelou que a maioria dos trabalhos está relacionada à área da saúde, destacando seu potencial na prevenção/tratamento de doenças. Diante dos resultados obtidos, espera-se que o crescimento do ramo produtivo e comercial desses peptídeos seja acompanhado pela ampliação da colaboração entre autores e instituições de diferentes territórios, estabelecendo uma rede global de parcerias.
Referências
Abdillahi, S. M., Maaß, T., Kasetty, G., Strömstedt, A. A., Baumgarten, M., Tati, R., Nordin, S. L., Walse, B., Wagener, R., Schmidtchen, A., & Mörgelin, M. (2018). Collagen VI contains multiple host defense peptides with potent in vivo activity. The Journal of Immunology, 201(3), 1007–1020. https://doi.org/10.4049/jimmunol.1700602 DOI: https://doi.org/10.4049/jimmunol.1700602
Ahmed, M., Verma, A. K., & Patel, R. (2020). Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 100315. https://doi.org/10.1016/j.scp.2020.100315 DOI: https://doi.org/10.1016/j.scp.2020.100315
Ahmed, R., & Chun, B.-S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. The Journal of Supercritical Fluids, 141, 88–96. https://doi.org/10.1016/j.supflu.2018.03.006 DOI: https://doi.org/10.1016/j.supflu.2018.03.006
Ahn, C., Ryan, B. J., Schleh, M. W., Varshney, P., Ludzki, A. C., Gillen, J. B., Van Pelt, D. W., Pitchford, L. M., Howton, S. M., Rode, T., Hummel, S. L., Burant, C. F., Little, J. P., & Horowitz, J. F. (2022). Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss. The Journal of Physiology, 600(9), 2127–2146. https://doi.org/10.1113/jp282371 DOI: https://doi.org/10.1113/JP282371
Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D., Morita, T., Morioka, K., & Adachi, K. (2020). Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chemistry, 329, 126775. https://doi.org/10.1016/j.foodchem.2020.126775 DOI: https://doi.org/10.1016/j.foodchem.2020.126775
Ali, A. M. M., Kishimura, H., & Benjakul, S. (2018). Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus jullieni) as affected by ultrasonication. Process Biochemistry, 66, 237–244. https://doi.org/10.1016/j.procbio.2018.01.003 DOI: https://doi.org/10.1016/j.procbio.2018.01.003
Behl, A., Jayawardena, N., Pereira, V., Islam, N., Giudice, M. D., & Choudrie, J. (2022). Gamification and e-learning for young learners: A systematic literature review, bibliometric analysis, and future research agenda. Technological Forecasting and Social Change, 176, 121445. https://doi.org/10.1016/j.techfore.2021.121445 DOI: https://doi.org/10.1016/j.techfore.2021.121445
Bretas, V. P. G., & Alon, I. (2021). Franchising research on emerging markets: Bibliometric and content analyses. Journal of Business Research, 133, 51–65. https://doi.org/10.1016/j.jbusres.2021.04.067 DOI: https://doi.org/10.1016/j.jbusres.2021.04.067
Chen, J., Chao, F., Mu, X., Jiang, J., Zhu, Q., Ren, J., Guo, Y., & Lou, Y. (2019). ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. Inorganic Chemistry Communications, 102, 25–29. https://doi.org/10.1016/j.inoche.2019.02.008 DOI: https://doi.org/10.1016/j.inoche.2019.02.008
Chen, J., Sun, S., Li, Y., & Liu, R. (2021). Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. LWT, 139, 110502. https://doi.org/10.1016/j.lwt.2020.110502 DOI: https://doi.org/10.1016/j.lwt.2020.110502
Chen, Y.-P., Liang, C.-H., Wu, H.-T., Pang, H.-Y., Chen, C., Wang, G.-H., & Chan, L.-P. (2018). Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. Journal of Food Science and Technology, 55(6), 2310–2317. https://doi.org/10.1007/s13197-018-3148-4 DOI: https://doi.org/10.1007/s13197-018-3148-4
Das, A., Abas, M., Biswas, N., Banerjee, P., Ghosh, N., Rawat, A., Khanna, S., Roy, S., & Sen, C. K. (2019). A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Scientific Reports, 9, 14293. https://doi.org/10.1038/s41598-019-49435-z DOI: https://doi.org/10.1038/s41598-019-49435-z
Dave, D., Liu, Y., Clark, L., Dave, N., Trenholm, S., & Westcott, J. (2019). Availability of marine collagen from Newfoundland fisheries and aquaculture waste resources. Bioresource Technology Reports, 7, 100271. https://doi.org/10.1016/j.biteb.2019.100271 DOI: https://doi.org/10.1016/j.biteb.2019.100271
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022 DOI: https://doi.org/10.1016/j.foodres.2014.06.022
FAO. (2018). The state of world fisheries and aquaculture 2018: Meeting the sustainable development goals. Rome. Food and Agriculture Organization of the United Nations.
Faruk, M., Rahman, M., & Hasan, S. (2021). How digital marketing evolved over time: a bibliometric analysis on Scopus database. Heliyon, 7(12), e08603. https://doi.org/10.1016/j.heliyon.2021.e08603 DOI: https://doi.org/10.1016/j.heliyon.2021.e08603
Felician, F. F., Yu, R.-H., Li, M.-Z., Li, C.-J., Chen, H.-Q., Jiang, Y., Tang, T., Qi, W.-Y., & Xu, H.-M. (2019). The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chinese Journal of Traumatology, 22(1), 12–20. https://doi.org/10.1016/j.cjtee.2018.10.004 DOI: https://doi.org/10.1016/j.cjtee.2018.10.004
Ferrario, C., Leggio, L., Leone, R., Di Benedetto, C., Guidetti, L., Coccè, V., Ascagni, M., Bonasoro, F., La Porta, C. A. M., Candia Carnevali, M. D., & Sugni, M. (2017). Marine-derived collagen biomaterials from echinoderm connective tissues. Marine Environmental Research, 128, 46–57. https://doi.org/10.1016/j.marenvres.2016.03.007 DOI: https://doi.org/10.1016/j.marenvres.2016.03.007
Fuggetta, M. P., Zonfrillo, M., Villivà, C., Bonmassar, E., & Ravagnan, G. (2019). Inflammatory microenvironment and adipogenic differentiation in obesity: the inhibitory effect of theobromine in a model of human obesity in vitro. Mediators of Inflammation, 2019, 1–10. https://doi.org/10.1155/2019/1515621 DOI: https://doi.org/10.1155/2019/1515621
Global Market Insights. (2022). Fish collagen peptides market share: Industry report 2027. Global Market Insights Inc. Accessed on October 26, 2022. Available at: https://www.gminsights.com/industry-analysis/fish-collagen-peptides-market.
Gómez, J. C., Ena, J., Arévalo Lorido, J. C., Seguí Ripoll, J. M., Carrasco-Sánchez, F. J., Gómez-Huelgas, R., Pérez Soto, M. I., Delgado Lista, J., & Pérez Martínez, P. (2021). Obesity is a chronic disease. Positioning statement of the Diabetes, Obesity and Nutrition Workgroup of the Spanish Society of Internal Medicine (SEMI) for an approach centred on individuals with obesity. Revista Clínica Española (English Edition), 221(9), 509–516. https://doi.org/10.1016/j.rceng.2020.06.013 DOI: https://doi.org/10.1016/j.rceng.2020.06.013
Gonçalves, M. C. P., Kieckbusch, T. G., Perna, R. F., Fujimoto, J. T., Morales, S. A. V., & Romanelli, J. P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 76, 95–110. https://doi.org/10.1016/j.procbio.2018.09.016 DOI: https://doi.org/10.1016/j.procbio.2018.09.016
Graça, M. F. P., Miguel, S. P., Cabral, C. S. D., & Correia, I. J. (2020). Hyaluronic acid—based wound dressings: A review. Carbohydrate Polymers, 241, 116364. https://doi.org/10.1016/j.carbpol.2020.116364 DOI: https://doi.org/10.1016/j.carbpol.2020.116364
Guo, L., Harnedy, P. A., O’Keeffe, M. B., Zhang, L., Li, B., Hou, H., & FitzGerald, R. J. (2015). Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry, 173, 536–542. https://doi.org/10.1016/j.foodchem.2014.10.055 DOI: https://doi.org/10.1016/j.foodchem.2014.10.055
Han, G., & Ceilley, R. (2017). Chronic wound healing: A review of current management and treatments. Advances in Therapy, 34(3), 599–610. https://doi.org/10.1007/s12325-017-0478-y DOI: https://doi.org/10.1007/s12325-017-0478-y
Hong, H., Fan, H., Roy, B. C., & Wu, J. (2021). Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chemistry, 352, 129355. https://doi.org/10.1016/j.foodchem.2021.129355 DOI: https://doi.org/10.1016/j.foodchem.2021.129355
Huang, C., Kuo, J., Wu, S., & Tsai, H. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chemistry, 190, 997–1006. https://doi.org/10.1016/j.foodchem.2015.06.066 DOI: https://doi.org/10.1016/j.foodchem.2015.06.066
Huang, C.Y., Wu, C.-H., Yang, J.-I., Li, Y.-H., & Kuo, J.-M. (2015). Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. Journal of Food and Drug Analysis, 23(4), 671–678. https://doi.org/10.1016/j.jfda.2014.06.009 DOI: https://doi.org/10.1016/j.jfda.2014.06.009
Jeevithan, E., Bao, B., Zhang, J., Hong, S., & Wu, W. (2015). Purification, characterization and antioxidant properties of low molecular weight collagenous polypeptide (37 kDa) prepared from whale shark cartilage (Rhincodon typus). Journal of Food Science and Technology, 52(10), 6312–6322. https://doi.org/10.1007/s13197-015-1715-5 DOI: https://doi.org/10.1007/s13197-015-1715-5
Jiang, C., Bhat, C. R., & Lam, W. H. K. (2020). A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019). Transportation Research Part B: Methodological, 138, 268–291. https://doi.org/10.1016/j.trb.2020.05.016 DOI: https://doi.org/10.1016/j.trb.2020.05.016
Kwon, J. H., & Powderly, W. G. (2021). The post-antibiotic era is here. Science, 373(6554), 471–471. https://doi.org/10.1126/science.abl5997 DOI: https://doi.org/10.1126/science.abl5997
Lakra, R., Kiran, M. S., & Sai Korrapati, P. (2022). Collagen scaffold reinforced with furfural for wound healing application. Materials Letters, 315, 131956. https://doi.org/10.1016/j.matlet.2022.131956 DOI: https://doi.org/10.1016/j.matlet.2022.131956
Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M.-C., Barkia, A., & Nasri, M. (2015). Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics, 128, 458–468. https://doi.org/10.1016/j.jprot.2015.05.007 DOI: https://doi.org/10.1016/j.jprot.2015.05.007
Lázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P. K., Kintses, B., Csörgő, B., Nyerges, Á., Györkei, Á., Kincses, A., Dér, A., Walter, F. R., Deli, M. A., Urbán, E., Hegedűs, Z., Olajos, G., & Méhi, O. (2018). Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 3(6), 718–731. https://doi.org/10.1038/s41564-018-0164-0 DOI: https://doi.org/10.1038/s41564-018-0164-0
Lee, E. J., Hur, J., Ham, S. A., Jo, Y., Lee, S., Choi, M.-J., & Seo, H. G. (2017). Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. International Journal of Biological Macromolecules, 104, 281–286. https://doi.org/10.1016/j.ijbiomac.2017.05.151 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.151
Li, C., Song, W., Wu, J., Lu, M., Zhao, Q., Fang, C., Wang, W., Park, Y.-D., & Qian, G.-Y. (2020). Thermal stable characteristics of acid- and pepsin-soluble collagens from the carapace tissue of Chinese soft-shelled turtle (Pelodiscus sinensis). Tissue and Cell, 67, 101424. https://doi.org/10.1016/j.tice.2020.101424 DOI: https://doi.org/10.1016/j.tice.2020.101424
Li, P.H., Lu, W.-C., Chan, Y.-J., Ko, W.-C., Jung, C.-C., Le Huynh, D. T., & Ji, Y.-X. (2020). Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture, 515, 734590. https://doi.org/10.1016/j.aquaculture.2019.734590 DOI: https://doi.org/10.1016/j.aquaculture.2019.734590
Li, W., Kobayashi, T., Meng, D., Miyamoto, N., Tsutsumi, N., Ura, K., & Takagi, Y. (2021). Free radical scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-products of mottled skate processing. Food Bioscience, 41, 100991. https://doi.org/10.1016/j.fbio.2021.100991 DOI: https://doi.org/10.1016/j.fbio.2021.100991
Lin, S., Hu, X., Li, L., Yang, X., Chen, S., Wu, Y., & Yang, S. (2021). Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. LWT, 149, 111796. https://doi.org/10.1016/j.lwt.2021.111796 DOI: https://doi.org/10.1016/j.lwt.2021.111796
Lin, X., Chen, Y., Jin, H., Zhao, Q., Liu, C., Li, R., Yu, F., Chen, Y., Huang, F., Yang, Z., Ding, G., & Tang, Y. (2019). Collagen extracted from bigeye tuna (Thunnus obesus) skin by isoelectric precipitation: physicochemical properties, proliferation, and migration activities. Marine Drugs, 17(5), 261. https://doi.org/10.3390/md17050261 DOI: https://doi.org/10.3390/md17050261
Lipoeto, N. I., Geok Lin, K., & Angeles-Agdeppa, I. (2012). Food consumption patterns and nutrition transition in South-East Asia. Public Health Nutrition, 16(9), 1637–1643. https://doi.org/10.1017/s1368980012004569 DOI: https://doi.org/10.1017/S1368980012004569
Luo, J., Zhou, Z., Yao, X., & Fu, Y. (2020). Mineral-chelating peptides derived from fish collagen: Preparation, bioactivity and bioavailability. LWT, 134, 110209. https://doi.org/10.1016/j.lwt.2020.110209 DOI: https://doi.org/10.1016/j.lwt.2020.110209
Luong, H. X., Thanh, T. T., & Tran, T. H. (2020). Antimicrobial peptides – Advances in development of therapeutic applications. Life Sciences, 260, 118407. https://doi.org/10.1016/j.lfs.2020.118407 DOI: https://doi.org/10.1016/j.lfs.2020.118407
Markets And Markets. (2022). Collagen peptides market global outlook, trends, and forecast to 2026. Available at: https://www.marketsandmarkets.com/Market-Reports/collagen-peptide-market-248590980.html (Accessed: May 26, 2022).
Masuda, H., Aung, M. S., Kobayashi, T., & Nishizawa, N. K. (2020). Iron biofortification: The gateway to overcoming hidden hunger. The Future of Rice Demand: Quality beyond Productivity, 149–177. https://doi.org/10.1007/978-3-030-37510-2_7 DOI: https://doi.org/10.1007/978-3-030-37510-2_7
Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C., & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. Journal of Pharmaceutical Sciences, 103(8), 2211–2230. https://doi.org/10.1002/jps.24068 DOI: https://doi.org/10.1002/jps.24068
Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. https://doi.org/10.3390/ma12132176 DOI: https://doi.org/10.3390/ma12132176
Moholkar, D. N., Sadalage, P. S., Peixoto, D., Paiva-Santos, A. C., & Pawar, K. D. (2021). Recent advances in biopolymer-based formulations for wound healing applications. European Polymer Journal, 160, 110784. https://doi.org/10.1016/j.eurpolymj.2021.110784 DOI: https://doi.org/10.1016/j.eurpolymj.2021.110784
Montero, P., Mosquera, M., Marín-Peñalver, D., Alemán, A., Martínez-Álvarez, Ó., & Gómez-Guillén, M. C. (2019). Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. Journal of Food Engineering, 244, 47–54. https://doi.org/10.1016/j.jfoodeng.2018.09.024 DOI: https://doi.org/10.1016/j.jfoodeng.2018.09.024
Mordor Intelligence. (2022). Collagen Peptide Market | 2022-2027 | Industry Share, Size, Analysis. Accessed on May 16, 2022. Available at: https://www.mordorintelligence.com/industry-reports/collagen-peptide-market.
Mörschbächer, A. P., & Granada, C. E. (2022). Mapping the worldwide knowledge of antimicrobial substances produced by Lactobacillus spp.: A bibliometric analysis. Biochemical Engineering Journal, 180, 108343. https://doi.org/10.1016/j.bej.2022.108343 DOI: https://doi.org/10.1016/j.bej.2022.108343
Mosquera, M., Giménez, B., Ramos, S., López-Caballero, M. E., Gómez-Guillén, M. del C., & Montero, P. (2014). Antioxidant, ACE-Inhibitory, and antimicrobial activities of peptide fractions obtained from dried giant squid tunics. Journal of Aquatic Food Product Technology, 25(3), 444–455. https://doi.org/10.1080/10498850.2013.819543 DOI: https://doi.org/10.1080/10498850.2013.819543
Murdayanti, Y., & Khan, M. N. A. A. (2021). The development of internet financial reporting publications: A concise of bibliometric analysis. Heliyon, 7(12), e08551. https://doi.org/10.1016/j.heliyon.2021.e08551 DOI: https://doi.org/10.1016/j.heliyon.2021.e08551
Nakchum, L., & Kim, S. M. (2016). Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Preparative Biochemistry & Biotechnology, 46(2), 123–130. https://doi.org/10.1080/10826068.2014.995808 DOI: https://doi.org/10.1080/10826068.2014.995808
Nešović, K., Janković, A., Radetić, T., Vukašinović-Sekulić, M., Kojić, V., Živković, L., Perić-Grujić, A., Rhee, K. Y., & Mišković-Stanković, V. (2019). Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. European Polymer Journal, 121, 109257. https://doi.org/10.1016/j.eurpolymj.2019.109257 DOI: https://doi.org/10.1016/j.eurpolymj.2019.109257
Nirmala, C., Bisht, M. S., Bajwa, H. K., & Santosh, O. (2018). Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends in Food Science & Technology, 77, 91–99. https://doi.org/10.1016/j.tifs.2018.05.003 DOI: https://doi.org/10.1016/j.tifs.2018.05.003
Nuñez, S. M., Guzmán, F., Valencia, P., Almonacid, S., & Cárdenas, C. (2020). Collagen as a source of bioactive peptides: A bioinformatics approach. Electronic Journal of Biotechnology, 48, 101–108. https://doi.org/10.1016/j.ejbt.2020.09.009 DOI: https://doi.org/10.1016/j.ejbt.2020.09.009
Nurilmala, M., Suryamarevita, H., Husein Hizbullah, H., Jacoeb, A. M., & Ochiai, Y. (2021). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021.09.056 DOI: https://doi.org/10.1016/j.sjbs.2021.09.056
Olatunji, O. (2020). Aquatic Biopolymers. In Springer Series on Polymer and Composite Materials. Springer International Publishing. https://doi.org/10.1007/978-3-030-34709-3 DOI: https://doi.org/10.1007/978-3-030-34709-3_16
Oliveira, V. de M., Assis, C. R. D., Costa, B. A. M., Neri, R. C. A., Monte, F. T. D., Freitas, H. M. S. C. V., França, R. C. P., Santos, J. F., Bezerra, R. S., & Porto, A. L. F. (2021). Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. Journal of Molecular Structure, 1224, 129023. https://doi.org/10.1016/j.molstruc.2020.129023 DOI: https://doi.org/10.1016/j.molstruc.2020.129023
Pan, X., Zhao, Y.-Q., Hu, F.-Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220–230. https://doi.org/10.1016/j.jff.2016.06.008 DOI: https://doi.org/10.1016/j.jff.2016.06.008
Park, S., & Jo, Y. (2019). Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochemistry, 83, 176–182. https://doi.org/10.1016/j.procbio.2019.05.015 DOI: https://doi.org/10.1016/j.procbio.2019.05.015
Patil, P. P., Reagan, M. R., & Bohara, R. A. (2020). Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 164, 4613–4627. https://doi.org/10.1016/j.ijbiomac.2020.08.041 DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.041
Pfalzgraff, A., Brandenburg, K., & Weindl, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, 281. https://doi.org/10.3389/fphar.2018.00281 DOI: https://doi.org/10.3389/fphar.2018.00281
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482 DOI: https://doi.org/10.3934/microbiol.2018.3.482
Salvatore, L., Gallo, N., Natali, M. L., Campa, L., Lunetti, P., Madaghiele, M., Blasi, F. S., Corallo, A., Capobianco, L., & Sannino, A. (2020). Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering: C, 113, 110963. https://doi.org/10.1016/j.msec.2020.110963 DOI: https://doi.org/10.1016/j.msec.2020.110963
Shang, Y., Yao, S., Qiao, X., Wang, Z., Zhao, X., Huang, Z., Gu, Q., Wang, N., & Peng, C. (2021). Evaluations of marine collagen peptides from tilapia skin on experimental oral ulcer model of mice. Materials Today Communications, 26, 101893. https://doi.org/10.1016/j.mtcomm.2020.101893 DOI: https://doi.org/10.1016/j.mtcomm.2020.101893
Sierra, L., Fan, H., Zapata, J., & Wu, J. (2021). Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT, 146, 111631. https://doi.org/10.1016/j.lwt.2021.111631 DOI: https://doi.org/10.1016/j.lwt.2021.111631
Sierra-Lopera, L. M., & Zapata-Montoya, J. E. (2021). Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnology Reports, 30, e00611. https://doi.org/10.1016/j.btre.2021.e00611 DOI: https://doi.org/10.1016/j.btre.2021.e00611
Song, Y., Fu, Y., Huang, S., Liao, L., Wu, Q., Wang, Y., Ge, F., & Fang, B. (2021). Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chemistry, 349, 129143. https://doi.org/10.1016/j.foodchem.2021.129143 DOI: https://doi.org/10.1016/j.foodchem.2021.129143
Souza, G. S., Jesus Sonego, L., Santos Mundim, A. C. S., Moraes, J. M., Sales-Campos, H., & Lorenzón, E. N. (2022). Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides, 148, 170707. https://doi.org/10.1016/j.peptides.2021.170707 DOI: https://doi.org/10.1016/j.peptides.2021.170707
Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168, 115–123. https://doi.org/10.1016/j.foodchem.2014.07.027 DOI: https://doi.org/10.1016/j.foodchem.2014.07.027
Välimaa, A.-L., Mäkinen, S., Mattila, P., Marnila, P., Pihlanto, A., Mäki, M., & Hiidenhovi, J. (2019). Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 3(4), 209–226. https://doi.org/10.1093/fqsafe/fyz024 DOI: https://doi.org/10.1093/fqsafe/fyz024
Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., & Sadiku, E. R. (2020). Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate Polymers, 236, 116025. https://doi.org/10.1016/j.carbpol.2020.116025 DOI: https://doi.org/10.1016/j.carbpol.2020.116025
Wang, C., Hong, T., Cui, P., Wang, J., & Xia, J. (2021). Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews, 175, 113818. https://doi.org/10.1016/j.addr.2021.05.028 DOI: https://doi.org/10.1016/j.addr.2021.05.028
Wei, X., Liu, Y., Luo, Y., Shen, Z., Wang, S., Li, M., & Zhang, L. (2021). Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. International Journal of Biological Macromolecules, 187, 462–470. https://doi.org/10.1016/j.ijbiomac.2021.07.082 DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.082
Wimley, W. C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology, 5(10), 905–917. https://doi.org/10.1021/cb1001558 DOI: https://doi.org/10.1021/cb1001558
Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., & He, H. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry, 248, 346–352. https://doi.org/10.1016/j.foodchem.2017.12.035 DOI: https://doi.org/10.1016/j.foodchem.2017.12.035
Wu, W., Yang, Y., Sun, N., Bao, Z., & Lin, S. (2020). Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Research International, 131, 108976. https://doi.org/10.1016/j.foodres.2020.108976 DOI: https://doi.org/10.1016/j.foodres.2020.108976
Yang, T., Zhang, K., Li, B., & Hou, H. (2018). Effects of oral administration of peptides with low molecular weight from Alaska pollock (Theragra chalcogramma) on cutaneous wound healing. Journal of Functional Foods, 48, 682–691. https://doi.org/10.1016/j.jff.2018.08.006 DOI: https://doi.org/10.1016/j.jff.2018.08.006
Zamorano-Apodaca, J. C., García-Sifuentes, C. O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S. M., & Lugo-Sánchez, M. E. (2020). Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chemistry, 331, 127350. https://doi.org/10.1016/j.foodchem.2020.127350 DOI: https://doi.org/10.1016/j.foodchem.2020.127350
Zhang, H., Yang, Y., & Zhou, Z. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17(1), 256–263. https://doi.org/10.1016/s2095-3119(17)61664-2 DOI: https://doi.org/10.1016/S2095-3119(17)61664-2
Zhang, Y., Ding, X., & Li, M. (2021). Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chemistry, 349, 129101. https://doi.org/10.1016/j.foodchem.2021.129101 DOI: https://doi.org/10.1016/j.foodchem.2021.129101
Zhao, X., Zhang, X., & Liu, D. (2021). Collagen peptides and the related synthetic peptides: A review on improving skin health. Journal of Functional Foods, 86, 104680. https://doi.org/10.1016/j.jff.2021.104680 DOI: https://doi.org/10.1016/j.jff.2021.104680
Zhu, L., Xie, Y., Wen, B., Ye, M., Liu, Y., Imam, K. M. S. U., Cai, H., Zhang, C., Wang, F., & Xin, F. (2020). Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods, 64, 103697. https://doi.org/10.1016/j.jff.2019.103697 DOI: https://doi.org/10.1016/j.jff.2019.103697
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Beatriz de Aquino Marques da Costa, Ana Lúcia Figueiredo Porto, Vagne de Melo Oliveira, Tatiana Souza Porto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista publica seus artigos em Acesso Aberto sob licença Creative Commons (CC BY 4.0).
Você é livre para:
Compartilhar — copie e redistribua o material em qualquer meio ou formato para qualquer finalidade, inclusive comercial.
Adaptar – remixar, transformar e desenvolver o material para qualquer finalidade, até mesmo comercial.
O licenciante não pode revogar essas liberdades desde que você siga os termos da licença.
Nos seguintes termos:
Atribuição — Você deve dar o devido crédito, fornecer um link para a licença e indicar se foram feitas alterações. Você pode fazê-lo de qualquer maneira razoável, mas não de forma que sugira que o licenciante endossa você ou seu uso.
Sem restrições adicionais — Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas de fazerem qualquer coisa que a licença permita.
Avisos:
Você não precisa cumprir a licença para elementos do material de domínio público ou onde seu uso for permitido por uma exceção ou limitação aplicável.
Nenhuma garantia é dada. A licença pode não conceder todas as permissões necessárias para o uso pretendido. Por exemplo, outros direitos, como publicidade, privacidade ou direitos morais, podem limitar a forma como você utiliza o material.