Development of a farofa with natto (fermented soy) rich in vitamin K2 as a potential aid in the prevention and treatment of osteoporosis in postmenopausal women

Development of a farofa with natto (fermented soy) rich in vitamin K2 as a potential aid in the prevention and treatment of osteoporosis in postmenopausal women

Authors

DOI:

https://doi.org/10.58951/fstoday.2024.009

Keywords:

Osteoporosis, Post-menopause, Vitamin K2, Natto-fortified farofa, fermented soy

Abstract

Osteoporosis is a common disease in people over 50 years old, especially in postmenopausal women, characterized by increased bone fragility and is associated with fractures, resulting in high morbidity and mortality. Vitamin K2 plays a crucial role in calcium metabolism by activating proteins such as osteocalcin and matrix Gla protein, which remove calcium from inappropriate sites and direct it to the bones, aiding in the prevention and treatment of osteoporosis. Although supplementation with calcium and vitamin D is common, studies show that this practice can increase the risk of atherosclerosis due to arterial calcification. In contrast, vitamin K2 reduces this risk and promotes bone health. Clinical studies have proven that vitamin K2 supplementation improves bone mineral density and reduces the risk of fractures. The main dietary source of vitamin K2 is natto, an Asian food made from soybeans fermented by Bacillus subtilis natto, which produces large amounts of vitamin K2, but its sensory characteristics limit its consumption. This study developed a natto-based farofa enriched with vitamin K2, aiming to introduce this nutrient into the Brazilian diet. The farofa provides approximately 91.49 µg of vitamin K2 per serving, contributing significantly to bone health. Additionally, vitamin K2 also offers other benefits, such as protection against cardiovascular and neurodegenerative diseases. Thus, natto farofa emerges as an innovative alternative to improve vitamin K2 intake, potentially reducing the prevalence of osteoporosis and promoting public health.

References

Akbulut, A. C., Pavlic, A., Petsophonsakul, P., Halder, M., Maresz, K., Kramann, R., & Schurgers, L. (2020). Vitamin K2 needs an RDI separate from vitamin K1. Nutrients, 12(6), 1–13. https://doi.org/10.3390/nu12061852

Chiodini, I., & Bolland, M. J. (2018). Calcium supplementation in osteoporosis: Useful or harmful? European Journal of Endocrinology, 178(4), D13–D25. https://doi.org/10.1530/EJE-18-0113

Coelho, V. A. T., Souza, C. G. de, Nascimento, E. de S., Lacerda, L. G., & Cardoso, P. A. (2020). Caracterização de sintomas e crescimento em Abobrinha Italiana (Cucurbita pepo L.) sob carencia de micronutrientes. Research, Society and Development, 9(3), e34932359. https://doi.org/10.33448/rsd-v9i3.2359

Dias, L. T., & Leonel, M. (2006). Caracterização físico-química de farinhas de mandioca de diferentes localidades do Brasil. Ciência e Agrotecnologia, 30(4), 692–700. https://doi.org/10.1590/s1413-70542006000400015

Elder, S. J., Haytowitz, D. B., Howe, J., Peterson, J. W., & Booth, S. L. (2006). Vitamin K contents of meat, dairy, and fast food in the U.S. diet. Journal of Agricultural and Food Chemistry, 54(2), 463–467. https://doi.org/10.1021/jf052400h

Embrapa. (2020). A história da cenoura. Embrapa Hortaliças. https://www.embrapa.br/busca-de-noticias/-/noticia/49845405/a-historia-da-cenoura

Ferland, G. (2012). The discovery of vitamin k and its clinical applications. Annals of Nutrition and Metabolism, 61(3), 213–218. https://doi.org/10.1159/000343108

Fernandes, C. dos S. (2019). Formas de nitrogênio como atenuadores do estresse salino em plantas de abobrinha. 67 p. Dissertação (Mestrado em Manejo de Solo e Água), Universidade Federal Rural do Semi-Árido, Mossoró, RN. https://repositorio.ufersa.edu.br/handle/prefix/1073

Fernandes, T. R. L., Oliveira, J. B., Lorencete, T. V., & Amadei, J. L. (2015). Fatores associados à osteoporose em mulheres na pós-menopausa. Semina: Ciências Biológicas e da Saúde, 36(1), 93–106. http://www.uel.br/revistas/uel/index.php/seminabio/article/view/21035

Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H. J., van der Meer, I. M., Hofman, A., & Witteman, J. C. M. (2004). Dietary Intake of Menaquinone Is Associated with a Reduced Risk of Coronary Heart Disease: The Rotterdam Study. The Journal of Nutrition, 134(11), 3100–3105. https://doi.org/10.1093/jn/134.11.3100

Gettens, C. S. (2016). Propriedades funcionais, nutricionais e atividade antimicrobiana de subprodutos agroindustriais de pêssego e sua aplicação em cookies. Dissertação (Mestrado em nutrição), Universidade Federal de Pelotas, Pelotas, RS. https://wp.ufpel.edu.br/ppgna/files/2016/02/Cristina-Gettens.pdf

Giri, T. K., Newton, D., Chaudhary, O., Deych, E., Napoli, N., Villareal, R., Diemer, K., E Milligan, P., & Gage, B. F. (2020). Maximal dose-response of vitamin-K2 (menaquinone-4) on undercarboxylated osteocalcin in women with osteoporosis. International Journal for Vitamin and Nutrition Research, 90(1–2), 42–48. https://doi.org/10.1024/0300-9831/a000554

Hsu, R. L., Lee, K. T., Wang, J. H., Lee, L. Y. L., & Chen, R. P. Y. (2009). Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. Journal of Agricultural and Food Chemistry, 57(2), 503–508. https://doi.org/10.1021/jf803072r

Huang, Z.-B., Wan, S.-L., Lu, Y.-J., Ning, L., Liu, C., & Fan, S.-W. (2015). Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporosis International, 26(3), 1175–1186. https://doi.org/10.1007/s00198-014-2989-6

Inaba, N., Sato, T., & Yamashita, T. (2015). Low-dose daily intake of vitamin K2 (menaquinone-7) improves osteocalcin γ-carboxylation: A double-blind, randomized controlled trials. Journal of Nutritional Science and Vitaminology, 61(6), 471–480. https://doi.org/10.3177/jnsv.61.471

Iwamoto, J. (2014). Vitamin K2 Therapy for Postmenopausal Osteoporosis. Nutrients, 6(5), 1971–1980. https://doi.org/10.3390/nu6051971

Jakubowski, P., Smyk, Ł., Puchała, Ł., & Białkowska, J. (2019). Current view on vitamin K2 role in diseases based on clinical trials. Farmacia, 67(4), 551–556. https://doi.org/10.31925/farmacia.2019.4.1

Klack, K., & Carvalho, J. F. de. (2006). Vitamina K: Metabolismo, fontes e interação com o anticoagulante varfarina. Revista Brasileira de Reumatologia, 46(6), 398–406. https://doi.org/10.1590/S0482-50042006000600007

Knapen, M. H. J., Schurgers, L. J., & Vermeer, C. (2007). Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporosis International, 18(7), 963–972. https://doi.org/10.1007/s00198-007-0337-9

Koitaya, N., Sekiguchi, M., Tousen, Y., Nishide, Y., Morita, A., Yamauchi, J., Gando, Y., Miyachi, M., Aoki, M., Komatsu, M., Watanabe, F., Morishita, K., & Ishimi, Y. (2014). Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. Journal of Bone and Mineral Metabolism, 32(2), 142–150. https://doi.org/10.1007/s00774-013-0472-7

Kojima, A. et al. (2019). Natto Intake is Inversely Associated with Osteoporotic Fracture Risk in Postmenopausal Japanese Women. The Journal Of Nutrition, 3, 599-605. https://academic.oup.com/jn/article-abstract/150/3/599/5673201?redirectedFrom=fulltext

Maresz, K. (2015). Proper calcium use: Vitamin K2 as a promoter of bone and cardiovascular health. Integrative Medicine (Boulder), 14(1), 34–39.

Rheaume-Bleue, K. (2017). A Vitamina K2 e o Paradoxo do Cálcio (1st ed.). Editora Laszlo.

Rodrigues, J. (2017). “De farinha, bendito seja Deus, estamos por agora muito bem”: Uma história da mandioca em perspectiva atlântica. Revista Brasileira de Historia, 37(75), 69–95. https://doi.org/10.1590/1806-93472017v37n75-03

Silva, A. C. B., Schuquel, L. C. D. S., Da Silva, C. O., & Pascoal, G. B. (2016). Qualidade nutricional e físico-química em cenoura (Daucus carota L.) in natura e minimamente processada. DEMETRA: Alimentação, Nutrição & Saúde, 11(2). https://doi.org/10.12957/demetra.2016.19491

Villa, J. K. D., Diaz, M. A. N., Pizziolo, V. R., & Martino, H. S. D. (2017). Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidences. Critical Reviews in Food Science and Nutrition, 57(18), 3959–3970. https://doi.org/10.1080/10408398.2016.1211616

Yuanyang, G., Runlin, X., Bo, X., Donghua, F., & Jun, M. (2019). Effect of vitamin K2 on bone mineral density and serum cathepsin K in female osteoporosis patients. Tropical Journal of Pharmaceutical Research, 18(1), 181–185. https://doi.org/10.4314/tjpr.v18i1.27

Zhang, Y., Liu, Z., Duan, L., Ji, Y., Yang, S., Zhang, Y., Li, H., Wang, Y., Wang, P., Chen, J., & Li, Y. (2020). Effect of low-dose vitamin K2 supplementation on bone mineral density in middle-aged and elderly chinese: a randomized controlled study. Calcified Tissue International, 106(5), 476–485. https://doi.org/10.1007/s00223-020-00669-4

Published

2024-08-20

How to Cite

Furlan, A. D. F., Amaral, A. S., Nagashima, F. A. T., Santana, G. de S., & Santos, C. N. I. dos. (2024). Development of a farofa with natto (fermented soy) rich in vitamin K2 as a potential aid in the prevention and treatment of osteoporosis in postmenopausal women. Food Science Today, 3(1), 58–63. https://doi.org/10.58951/fstoday.2024.009

Issue

Section

Research Article
Loading...