Application of edible coatings containing essential oils in 'Pera' orange (Citrus sinensis L. Osbeck)

Application of edible coatings containing essential oils in 'Pera' orange (Citrus sinensis L. Osbeck)

Authors

DOI:

https://doi.org/10.58951/fstoday.2024.003

Keywords:

Pectin, Post-harvest quality, Mentha arvensis, Sicilian lemon, Visual quality, Weight loss

Abstract

The 'Pera' orange holds significant economic importance in Brazil for juice production, necessitating the exploration of postharvest loss prevention technologies to enhance shelf life and overall quality. This study assessed edible coatings based on pectin containing lemon and Mentha arvensis L. essential oils, aiming to preserve the ‘Pera’ oranges quality. Various coating compositions were tested with pectin concentrations of 0.5% (w/v), 1% (w/v), and 2% (w/v). Sorbitol (20% w/w of the polymer) served as a plasticizer, and the essential oil emulsion (0.4% v/v) was introduced to oranges without pectin (E) as well as at concentrations of 0.5% and 1% of the polymer. The oranges underwent coating application and were stored for 29 days at 20 °C and analyzed every 4 days. Visual assessment utilized photos, and color analysis following the CIELAB system. Fruit weight was measured at intervals, and the percentage weight loss was calculated relative to the initial weight. Results indicated that samples with 0.5g pectin/100g (16.64) and the control group (15.52) exhibited greater color variation and more pronounced visual changes, while those treated with 1 g pectin/100g pectin (5.75) demonstrated minimal alterations in both analyses. Weight losses were higher in the E treatments (11.99%), with the lowest observed in the 0.5 g pectin/100g group (9.26%). These findings highlight the potential of polysaccharide-based coatings in preserving postharvest quality, although variations in fruit ripening suggest the need for future studies with larger experimental groups.

References

ABIA - Associação Brasileira da Indústria de Alimentos. (2023). Balanço econômico da indústria de alimentos e bebidas 2023. Acessado em: 16 Mar 2024. Disponível em: https://www.abia.org.br/vsn/temp/OnePage_2024_VF_VF.pdf.

Agustí, M., Zaragoza, S., Bleiholder, H., Buhr, L., Hack, H., Klose, R., & Stauß, R. (1995). Escala BBCH para la descripción de los estadios fenológicos del desarrollo de los agrios (Gén. Citrus). Levante Agrícola, 332, 189–199.

Aitboulahsen, M., Zantar, S., Laglaoui, A., Chairi, H., Arakrak, A., Bakkali, M., & Hassani Zerrouk, M. (2018). Gelatin-based edible coating combined with mentha pulegium essential oil as bioactive packaging for strawberries. Journal of Food Quality, 2018, 1–7. https://doi.org/10.1155/2018/8408915

Alexandre, L. A., & Zuge, L. C. B. (2023). Development and application on strawberries of edible coatings based on yam and corn starch added with Rio Grande cherry. Food Science Today, 1(1). https://doi.org/10.58951/fstoday.v1i1.9

Amarante, C. V. T. do, Steffens, C. A., Mota, C. S., & Santos, H. P. dos. (2007). Radiação, fotossíntese, rendimento e qualidade de frutos em macieiras “Royal Gala” cobertas com telas antigranizo. Pesquisa Agropecuária Brasileira, 42(7), 925–931. https://doi.org/10.1590/S0100-204X2007000700003

Appelhans, M. S., Bayly, M. J., Heslewood, M. M., Groppo, M., Verboom, G. A., Forster, P. I., Kallunki, J. A., & Duretto, M. F. (2021). A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon, 70(5), 1035–1061. https://doi.org/10.1002/tax.12543

Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566. https://doi.org/10.1016/j.foodchem.2019.125566

Biswas, N. N., Saha, S., & Ali, M. K. (2014). Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L. Asian Pacific Journal of Tropical Biomedicine, 4(10), 792–797. https://doi.org/10.12980/APJTB.4.2014C1298

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Cakmak, H., Kumcuoglu, S., & Tavman, S. (2018). Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices. Journal of Food Process Engineering, 41(1). https://doi.org/10.1111/jfpe.12627

Cakmak, H., Kumcuoglu, S., & Tavman, S. (2019). Electrospray coating of minimally processed strawberries and evaluation of the shelf-life quality properties. Journal of Food Process Engineering, 42(5). https://doi.org/10.1111/jfpe.13082

Castro, C., & Podesta, N. (2024). Citrus Annual (Report No. BR2023-0036). U.S. Department of Agriculture, Foreign Agricultural Service. Washington, D.C. Acesso em: 20 Mar 2024.Disponível em: https://citrusindustry.net/wp-content/uploads/2024/01/Citrus-Annual_Brasilia_Brazil_BR2023-0036.pdf.

Chan, S. Y., Choo, W. S., Young, D. J., & Loh, X. J. (2016). Pectin As a Rheology Modifier: Recent Reports on Its Origin, Structure, Commercial Production and Gelling Mechanism. In X. J. Loh (Ed.), Polymers for Personal Care Products and Cosmetics (pp. 205–226). The Royal Society of Chemistry. https://doi.org/10.1039/9781782623984-00205

Chen, H., Sun, Z., & Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244, 157–164. https://doi.org/10.1016/j.scienta.2018.09.039

Cherman, K. A., Scapim, M. R. da S., Silva, J. F., & Madrona, G. S. (2022). Caracterização de cobertura comestível a base de alginato e óleos essenciais. Research, Society and Development, 11(2), e52911226145. https://doi.org/10.33448/rsd-v11i2.26145

Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (Vol. 1). Lavras: Universidade Federal de Lavras. 783 p.

Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513. https://doi.org/10.1016/j.foodchem.2017.07.034

Díaz-Montes, E., & Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), 249. https://doi.org/10.3390/foods10020249

El-Otmani, M., Zacarías, L., Pareek, S., Thompson, A. K., Sivakumar, D., Benkeblia, N., & El-Otmani, M. (2014). Citrus postharvest physiology and technology. In Postharvest physiology and technology: tropical and subtropical fruits (p. 81–108). CABI Publishing.

FAO – Organização das Nações Unidas para Alimentação e Agricultura. (2013). Food wastage footprint: Impacts on natural resources. Roma. Acessado em: 08 Mar 2023. Disponível em: <http://www.fao.org/docrep/018/i3347e/i3347e.pdf>.

Futch, S. H., & Ferrarezi, R. S. (2019). Inside Brazil’s citrus industry. Citrus Industry, 100(12), 14-17. Acessado em: 20 Fev 2024. Disponível em: <https://crec.ifas.ufl.edu/media/crecifasufledu/extension/extension-publications/2019/2019_december_brazil.pdf>.

Goldschmidt, E. E., Huberman, M., & Goren, R. (1993). Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. Plant Growth Regulation, 12(3), 325–329. https://doi.org/10.1007/BF00027214

Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153(2), 384–395. https://doi.org/10.1104/pp.110.156588

Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59–65. https://doi.org/10.1016/j.carbpol.2015.12.051

Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M., & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827–1836. https://doi.org/10.1002/jsfa.4021

Hussain, S. B., Naseer, M., Manzoor, M., Akbar, A., Hayyat, S., & Sabir, S. (2022). Maturity Indices and Harvesting Methods for Citrus Fruit. In S. Hussain, M. F. Khalid, M. A. Ali, N. Ahmed, M. Hasanuzzaman, & S. Ahmad (Eds.), Citrus Production (1st ed., p. 8). CRC Press. https://doi.org/10.1201/9781003119852

IBGE - Instituto Brasileiro de Geografia e Estatística. (2021). Levantamento Sistemático da Produção Agrícola. Rio de Janeiro. Acessado em: 06 Mar 2023. Disponível em: <https://sidra.ibge.gov.br/home/pimpfbr/brasil>.

Ishaque, F., Hossain, M. A., Sarker, M. A. R., Mia, M. Y., Dhrubo, A. S., Uddin, G. T., & Rahman, M. H. (2019). A study on low cost post harvest storage techniques to extend the shelf life of citrus fruits and vegetables. Journal of Engineering Research and Reports, 1–17. https://doi.org/10.9734/jerr/2019/v9i117009

Krochta, J. M. (1997). Edible Protein Films and Coatings. In S. Damodaran (Ed.), Food Proteins and Their Applications (1st ed., pp. 529–550). CRC Press. https://doi.org/10.1201/9780203755617

Kumar, A., Shukla, R., Singh, P., Singh, A. K., & Dubey, N. K. (2009). Use of essential oil from Mentha arvensis L. to control storage moulds and insects in stored chickpea. Journal of the Science of Food and Agriculture, 89(15), 2643–2649. https://doi.org/10.1002/jsfa.3768

Lacroix, M., & Vu, K. D. (2014). Edible Coating and Film Materials: Proteins. In J. H. Han (Ed.), Innovations in Food Packaging: Second Edition (2nd ed., pp. 277–304). Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00011-4

Lancaster, J. E., Lister, C. E., Reay, P. F., & Triggs, C. M. (1997). Influence of pigment composition on skin color in a wide range of fruit and vegetables. Journal of the American Society for Horticultural Science, 122(4), 594–598. https://doi.org/10.21273/jashs.122.4.594

Maftoonazad, N., & Ramaswamy, H. S. (2005). Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT - Food Science and Technology, 38(6), 617–624. https://doi.org/10.1016/j.lwt.2004.08.007

Maftoonazad, N., & Ramaswamy, H. S. (2019). Application and evaluation of a pectin-based edible coating process for quality change kinetics and shelf-life extension of lime fruit (Citrus aurantifolium). Coatings, 9(5), 285. https://doi.org/10.3390/coatings9050285

Martínez, K., Ortiz, M., Albis, A., Castañeda, C. G. G., Valencia, M. E., & Tovar, C. D. G. (2018). The effect of edible chitosan coatings incorporated with thymus capitatus essential oil on the shelf-life of strawberry (Fragaria x ananassa) during cold storage. Biomolecules, 8(4), 155. https://doi.org/10.3390/biom8040155

Massaglia, S., Borra, D., Peano, C., Sottile, F., & Merlino, V. M. (2019). Consumer preference heterogeneity evaluation in fruit and vegetable purchasing decisions using the best–worst approach. Foods, 8(7), 266. https://doi.org/10.3390/foods8070266

Mattiuz, B.-H., & Durigan, J. F. (2001). Efeito de injúrias mecânicas na firmeza e coloração de goiabas das cultivares Paluma e Pedro Sato. Revista Brasileira de Fruticultura, 23(2), 277–281. https://doi.org/10.1590/s0100-29452001000200015

Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277. https://doi.org/10.1016/j.pbi.2008.03.006

Montaño-Leyva, B., Ghizzi D. da Silva, G., Gastaldi, E., Torres-Chávez, P., Gontard, N., & Angellier-Coussy, H. (2013). Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 43(1), 545–555. https://doi.org/10.1016/j.indcrop.2012.07.065

Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packaging and Shelf Life, 16, 157–167. https://doi.org/10.1016/j.fpsl.2018.03.011

Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663–673. https://doi.org/10.1016/j.tifs.2021.02.025

Pereira, G. da S., Machado, F. L. de C., & Costa, J. M. C. da. (2014). Aplicação de recobrimento prolonga a qualidade pós-colheita de laranja “Valência Delta” durante armazenamento ambiente. Revista Ciência Agronômica, 45(3), 520–527. https://doi.org/10.1590/s1806-66902014000300012

Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851

Rehman, S. U., Abbasi, K. S., Qayyum, A., Jahangir, M., Sohail, A., Nisa, S., Tareen, M. N., Tareen, M. J., & Sopade, P. (2020). Comparative analysis of citrus fruits for nutraceutical properties. Food Science and Technology (Brazil), 40(suppl 1), 153–157. https://doi.org/10.1590/fst.07519

Ritenour, M. A., Miller, W. M., & Wardowski, W. W. (2003). Recommendations for Degreening Florida Fresh Citrus Fruits: Cir 1170/HS195, 8/2003. EDIS, 2003(16). https://doi.org/10.32473/edis-hs195-2003

Rodriguez-Garcia, I., Cruz-Valenzuela, M. R., Silva-Espinoza, B. A., Gonzalez-Aguilar, G. A., Moctezuma, E., Gutierrez-Pacheco, M. M., Tapia-Rodriguez, M. R., Ortega-Ramirez, L. A., & Ayala-Zavala, J. F. (2016). Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. Journal of the Science of Food and Agriculture, 96(11), 3772–3778. https://doi.org/10.1002/jsfa.7568

Rombaldi, C. V., Tibola, C. S., Fachinello, J. C., & Silva, J. A. (2007). Percepção de consumidores do Rio Grande do Sul em relação a quesitos de qualidade em frutas. Revista Brasileira de Fruticultura, 29(3), 681–684. https://doi.org/10.1590/S0100-29452007000300049

Rossman, J. M. (2009). Commercial Manufacture of Edible Films. In K. C. Huber & M. E. Embuscado (Eds.), Edible Films and Coatings for Food Applications (pp. 367–390). Springer New York. https://doi.org/10.1007/978-0-387-92824-1_14

Saavedra, S. C., Ventura-Aguilar, R. I., Silvia Bautista-Baños, & Barrera-Necha, L. L. (2020). Biodegradable chitosan coating for improving quality and controlling Alternaria alternata growth in figs. World Journal of Advanced Research and Reviews, 7(2), 115–125. https://doi.org/10.30574/wjarr.2020.7.2.0246

Saberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9–20. https://doi.org/10.1016/j.postharvbio.2017.11.003

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3(1), 1–16. https://doi.org/10.1007/s12393-010-9031-3

Santos, K. L. dos, Panizzon, J., Cenci, M. M., Grabowski, G., & Jahno, V. D. (2020). Perdas e desperdícios de alimentos: reflexões sobre o atual cenário brasileiro. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.13419

Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5), 152. https://doi.org/10.3390/coatings8050152

Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124(1), 40–45. https://doi.org/10.1016/j.scienta.2009.12.004

Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science, 25(3), 295–314. https://doi.org/10.1080/19315260.2018.1510863

Silva, P. de C. e, Oliveira, A. C. S. de, Pereira, L. A. S., Valquíria, M., Carvalho, G. R., Miranda, K. W. E., Marconcini, J. M., & Oliveira, J. E. (2020). Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites, 41(3), 858–870. https://doi.org/10.1002/pc.25416

Stuchi, E. S., Girardi, E. A., Silva, S. R., Sempionato, O. R., Parolin, L. G., Müller, G. W., & Donadio, L. C. (2020). Desempenho de clones pré-imunizados de laranjeiras Valência e Natal no Norte do Estado de São Paulo. Citrus Research & Technology, 41. https://doi.org/10.4322/crt.20919

Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259, 117764. https://doi.org/10.1016/j.carbpol.2021.117764

Tavares, F. D. O., Pieretti, G. G., Antigo, J. L., Pozza, M. S. dos S., Scapim, M. R. da S., & Madrona, G. S. (2014). Cobertura comestível adicionada de óleos essenciais de orégano e alecrim para uso em ricota. Revista Do Instituto de Laticínios Cândido Tostes, 69(4), 249. https://doi.org/10.14295/2238-6416.v69i4.309

Valdés, A., Burgos, N., Jiménez, A., & Garrigós, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865–886. https://doi.org/10.3390/coatings5040865

Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Science and Technology, 52(2), 80–92. https://doi.org/10.1016/j.lwt.2013.02.004

Wang, F., Lu, M., Zhou, S., Lu, Z., & Ran, S. (2019). Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules, 24(15), 2682. https://doi.org/10.3390/molecules24152682

White, G. W., Katona, T., & Zodda, J. P. (1999). The use of high-performance size exclusion chromatography (HPSEC) as a molecular weight screening technique for polygalacturonic acid for use in pharmaceutical applications. Journal of Pharmaceutical and Biomedical Analysis, 20(6), 905–912. https://doi.org/10.1016/S0731-7085(99)00083-7

Xie, L., Hettiarachchy, N. S., Ju, Z. Y., Meullenet, J., Wang, H., Slavik, M. F., & Janes, M. E. (2002). Edible film coating to minimize eggshell breakage and reduce post-wash bacterial contamination measured by dye penetration in eggs. Journal of Food Science, 67(1), 280–284. https://doi.org/10.1111/j.1365-2621.2002.tb11398.x

Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46–53. https://doi.org/10.1016/j.postharvbio.2014.01.018

Yin, X. R., Xie, X. L., Xia, X. J., Yu, J. Q., Ferguson, I. B., Giovannoni, J. J., & Chen, K. S. (2016). Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal : For Cell and Molecular Biology, 86(5), 403–412. https://doi.org/10.1111/tpj.13178

Published

2024-04-17

How to Cite

Souza, V. N. B. de, Moretto, N. C., Oliveira, I. G. S., Aranha, C. P. M., & Martelli, S. M. (2024). Application of edible coatings containing essential oils in ’Pera’ orange (Citrus sinensis L. Osbeck). Food Science Today, 3(1), 11–19. https://doi.org/10.58951/fstoday.2024.003

Issue

Section

Research Article
Loading...