Aplicação de revestimentos comestíveis contendo óleos essenciais em laranja ‘Pêra’ (Citrus sinensis L. Osbeck)
DOI:
https://doi.org/10.58951/fstoday.2024.003Palavras-chave:
Pectina, Qualidade pós-colheita, Mentha arvensis, Limão Siciliano, Qualidade visual, Perda de pesoResumo
A laranja 'Pera' tem importância econômica significativa no Brasil para a produção de suco, necessitando da exploração de tecnologias de prevenção de perdas pós-colheita para melhorar a vida útil e a qualidade geral. Este estudo avaliou coberturas comestíveis à base de pectina contendo óleos essenciais de limão e Mentha arvensis L., visando preservar a qualidade da laranja ‘Pera’. Várias composições de revestimento foram testadas com concentrações de pectina de 0,5% (p/v), 1% (p/v) e 2% (p/v). O sorbitol (20% p/p do polímero) serviu como plastificante, e a emulsão de óleo essencial (0,4% v/v) foi introduzida nas laranjas sem pectina (E), bem como nas concentrações de 0,5% e 1% do polímero. As laranjas passaram por aplicação de revestimento e foram armazenadas por 29 dias a 20 °C e analisadas a cada 4 dias. A avaliação visual utilizou fotos e análise de cores seguindo o sistema CIELAB. O peso dos frutos foi medido em intervalos e a porcentagem de perda de peso foi calculada em relação ao peso inicial. Os resultados indicaram que as amostras com 0,5g de pectina/100g (16,64) e o grupo controle (15,52) exibiram maior variação de cor e alterações visuais mais pronunciadas, enquanto aquelas tratadas com 1 g de pectina/100g de pectina (5,75) demonstraram alterações mínimas em ambas as análises. As perdas de peso foram maiores nos tratamentos E (11,99%), sendo as menores observadas no grupo 0,5 g de pectina/100g (9,26%). Estas descobertas destacam o potencial dos revestimentos à base de polissacarídeos na preservação da qualidade pós-colheita, embora variações no amadurecimento dos frutos sugiram a necessidade de estudos futuros com grupos experimentais maiores.
Referências
ABIA - Associação Brasileira da Indústria de Alimentos. (2023). Balanço econômico da indústria de alimentos e bebidas 2023. Acessado em: 16 Mar 2024. Disponível em: https://www.abia.org.br/vsn/temp/OnePage_2024_VF_VF.pdf.
Agustí, M., Zaragoza, S., Bleiholder, H., Buhr, L., Hack, H., Klose, R., & Stauß, R. (1995). Escala BBCH para la descripción de los estadios fenológicos del desarrollo de los agrios (Gén. Citrus). Levante Agrícola, 332, 189–199.
Aitboulahsen, M., Zantar, S., Laglaoui, A., Chairi, H., Arakrak, A., Bakkali, M., & Hassani Zerrouk, M. (2018). Gelatin-based edible coating combined with mentha pulegium essential oil as bioactive packaging for strawberries. Journal of Food Quality, 2018, 1–7. https://doi.org/10.1155/2018/8408915
Alexandre, L. A., & Zuge, L. C. B. (2023). Development and application on strawberries of edible coatings based on yam and corn starch added with Rio Grande cherry. Food Science Today, 1(1). https://doi.org/10.58951/fstoday.v1i1.9
Amarante, C. V. T. do, Steffens, C. A., Mota, C. S., & Santos, H. P. dos. (2007). Radiação, fotossíntese, rendimento e qualidade de frutos em macieiras “Royal Gala” cobertas com telas antigranizo. Pesquisa Agropecuária Brasileira, 42(7), 925–931. https://doi.org/10.1590/S0100-204X2007000700003
Appelhans, M. S., Bayly, M. J., Heslewood, M. M., Groppo, M., Verboom, G. A., Forster, P. I., Kallunki, J. A., & Duretto, M. F. (2021). A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon, 70(5), 1035–1061. https://doi.org/10.1002/tax.12543
Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566. https://doi.org/10.1016/j.foodchem.2019.125566
Biswas, N. N., Saha, S., & Ali, M. K. (2014). Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L. Asian Pacific Journal of Tropical Biomedicine, 4(10), 792–797. https://doi.org/10.12980/APJTB.4.2014C1298
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Cakmak, H., Kumcuoglu, S., & Tavman, S. (2018). Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices. Journal of Food Process Engineering, 41(1). https://doi.org/10.1111/jfpe.12627
Cakmak, H., Kumcuoglu, S., & Tavman, S. (2019). Electrospray coating of minimally processed strawberries and evaluation of the shelf-life quality properties. Journal of Food Process Engineering, 42(5). https://doi.org/10.1111/jfpe.13082
Castro, C., & Podesta, N. (2024). Citrus Annual (Report No. BR2023-0036). U.S. Department of Agriculture, Foreign Agricultural Service. Washington, D.C. Acesso em: 20 Mar 2024.Disponível em: https://citrusindustry.net/wp-content/uploads/2024/01/Citrus-Annual_Brasilia_Brazil_BR2023-0036.pdf.
Chan, S. Y., Choo, W. S., Young, D. J., & Loh, X. J. (2016). Pectin As a Rheology Modifier: Recent Reports on Its Origin, Structure, Commercial Production and Gelling Mechanism. In X. J. Loh (Ed.), Polymers for Personal Care Products and Cosmetics (pp. 205–226). The Royal Society of Chemistry. https://doi.org/10.1039/9781782623984-00205
Chen, H., Sun, Z., & Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244, 157–164. https://doi.org/10.1016/j.scienta.2018.09.039
Cherman, K. A., Scapim, M. R. da S., Silva, J. F., & Madrona, G. S. (2022). Caracterização de cobertura comestível a base de alginato e óleos essenciais. Research, Society and Development, 11(2), e52911226145. https://doi.org/10.33448/rsd-v11i2.26145
Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (Vol. 1). Lavras: Universidade Federal de Lavras. 783 p.
Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513. https://doi.org/10.1016/j.foodchem.2017.07.034
Díaz-Montes, E., & Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), 249. https://doi.org/10.3390/foods10020249
El-Otmani, M., Zacarías, L., Pareek, S., Thompson, A. K., Sivakumar, D., Benkeblia, N., & El-Otmani, M. (2014). Citrus postharvest physiology and technology. In Postharvest physiology and technology: tropical and subtropical fruits (p. 81–108). CABI Publishing.
FAO – Organização das Nações Unidas para Alimentação e Agricultura. (2013). Food wastage footprint: Impacts on natural resources. Roma. Acessado em: 08 Mar 2023. Disponível em: <http://www.fao.org/docrep/018/i3347e/i3347e.pdf>.
Futch, S. H., & Ferrarezi, R. S. (2019). Inside Brazil’s citrus industry. Citrus Industry, 100(12), 14-17. Acessado em: 20 Fev 2024. Disponível em: <https://crec.ifas.ufl.edu/media/crecifasufledu/extension/extension-publications/2019/2019_december_brazil.pdf>.
Goldschmidt, E. E., Huberman, M., & Goren, R. (1993). Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. Plant Growth Regulation, 12(3), 325–329. https://doi.org/10.1007/BF00027214
Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153(2), 384–395. https://doi.org/10.1104/pp.110.156588
Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59–65. https://doi.org/10.1016/j.carbpol.2015.12.051
Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M., & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827–1836. https://doi.org/10.1002/jsfa.4021
Hussain, S. B., Naseer, M., Manzoor, M., Akbar, A., Hayyat, S., & Sabir, S. (2022). Maturity Indices and Harvesting Methods for Citrus Fruit. In S. Hussain, M. F. Khalid, M. A. Ali, N. Ahmed, M. Hasanuzzaman, & S. Ahmad (Eds.), Citrus Production (1st ed., p. 8). CRC Press. https://doi.org/10.1201/9781003119852
IBGE - Instituto Brasileiro de Geografia e Estatística. (2021). Levantamento Sistemático da Produção Agrícola. Rio de Janeiro. Acessado em: 06 Mar 2023. Disponível em: <https://sidra.ibge.gov.br/home/pimpfbr/brasil>.
Ishaque, F., Hossain, M. A., Sarker, M. A. R., Mia, M. Y., Dhrubo, A. S., Uddin, G. T., & Rahman, M. H. (2019). A study on low cost post harvest storage techniques to extend the shelf life of citrus fruits and vegetables. Journal of Engineering Research and Reports, 1–17. https://doi.org/10.9734/jerr/2019/v9i117009
Krochta, J. M. (1997). Edible Protein Films and Coatings. In S. Damodaran (Ed.), Food Proteins and Their Applications (1st ed., pp. 529–550). CRC Press. https://doi.org/10.1201/9780203755617
Kumar, A., Shukla, R., Singh, P., Singh, A. K., & Dubey, N. K. (2009). Use of essential oil from Mentha arvensis L. to control storage moulds and insects in stored chickpea. Journal of the Science of Food and Agriculture, 89(15), 2643–2649. https://doi.org/10.1002/jsfa.3768
Lacroix, M., & Vu, K. D. (2014). Edible Coating and Film Materials: Proteins. In J. H. Han (Ed.), Innovations in Food Packaging: Second Edition (2nd ed., pp. 277–304). Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00011-4
Lancaster, J. E., Lister, C. E., Reay, P. F., & Triggs, C. M. (1997). Influence of pigment composition on skin color in a wide range of fruit and vegetables. Journal of the American Society for Horticultural Science, 122(4), 594–598. https://doi.org/10.21273/jashs.122.4.594
Maftoonazad, N., & Ramaswamy, H. S. (2005). Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT - Food Science and Technology, 38(6), 617–624. https://doi.org/10.1016/j.lwt.2004.08.007
Maftoonazad, N., & Ramaswamy, H. S. (2019). Application and evaluation of a pectin-based edible coating process for quality change kinetics and shelf-life extension of lime fruit (Citrus aurantifolium). Coatings, 9(5), 285. https://doi.org/10.3390/coatings9050285
Martínez, K., Ortiz, M., Albis, A., Castañeda, C. G. G., Valencia, M. E., & Tovar, C. D. G. (2018). The effect of edible chitosan coatings incorporated with thymus capitatus essential oil on the shelf-life of strawberry (Fragaria x ananassa) during cold storage. Biomolecules, 8(4), 155. https://doi.org/10.3390/biom8040155
Massaglia, S., Borra, D., Peano, C., Sottile, F., & Merlino, V. M. (2019). Consumer preference heterogeneity evaluation in fruit and vegetable purchasing decisions using the best–worst approach. Foods, 8(7), 266. https://doi.org/10.3390/foods8070266
Mattiuz, B.-H., & Durigan, J. F. (2001). Efeito de injúrias mecânicas na firmeza e coloração de goiabas das cultivares Paluma e Pedro Sato. Revista Brasileira de Fruticultura, 23(2), 277–281. https://doi.org/10.1590/s0100-29452001000200015
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277. https://doi.org/10.1016/j.pbi.2008.03.006
Montaño-Leyva, B., Ghizzi D. da Silva, G., Gastaldi, E., Torres-Chávez, P., Gontard, N., & Angellier-Coussy, H. (2013). Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 43(1), 545–555. https://doi.org/10.1016/j.indcrop.2012.07.065
Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packaging and Shelf Life, 16, 157–167. https://doi.org/10.1016/j.fpsl.2018.03.011
Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663–673. https://doi.org/10.1016/j.tifs.2021.02.025
Pereira, G. da S., Machado, F. L. de C., & Costa, J. M. C. da. (2014). Aplicação de recobrimento prolonga a qualidade pós-colheita de laranja “Valência Delta” durante armazenamento ambiente. Revista Ciência Agronômica, 45(3), 520–527. https://doi.org/10.1590/s1806-66902014000300012
Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851
Rehman, S. U., Abbasi, K. S., Qayyum, A., Jahangir, M., Sohail, A., Nisa, S., Tareen, M. N., Tareen, M. J., & Sopade, P. (2020). Comparative analysis of citrus fruits for nutraceutical properties. Food Science and Technology (Brazil), 40(suppl 1), 153–157. https://doi.org/10.1590/fst.07519
Ritenour, M. A., Miller, W. M., & Wardowski, W. W. (2003). Recommendations for Degreening Florida Fresh Citrus Fruits: Cir 1170/HS195, 8/2003. EDIS, 2003(16). https://doi.org/10.32473/edis-hs195-2003
Rodriguez-Garcia, I., Cruz-Valenzuela, M. R., Silva-Espinoza, B. A., Gonzalez-Aguilar, G. A., Moctezuma, E., Gutierrez-Pacheco, M. M., Tapia-Rodriguez, M. R., Ortega-Ramirez, L. A., & Ayala-Zavala, J. F. (2016). Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. Journal of the Science of Food and Agriculture, 96(11), 3772–3778. https://doi.org/10.1002/jsfa.7568
Rombaldi, C. V., Tibola, C. S., Fachinello, J. C., & Silva, J. A. (2007). Percepção de consumidores do Rio Grande do Sul em relação a quesitos de qualidade em frutas. Revista Brasileira de Fruticultura, 29(3), 681–684. https://doi.org/10.1590/S0100-29452007000300049
Rossman, J. M. (2009). Commercial Manufacture of Edible Films. In K. C. Huber & M. E. Embuscado (Eds.), Edible Films and Coatings for Food Applications (pp. 367–390). Springer New York. https://doi.org/10.1007/978-0-387-92824-1_14
Saavedra, S. C., Ventura-Aguilar, R. I., Silvia Bautista-Baños, & Barrera-Necha, L. L. (2020). Biodegradable chitosan coating for improving quality and controlling Alternaria alternata growth in figs. World Journal of Advanced Research and Reviews, 7(2), 115–125. https://doi.org/10.30574/wjarr.2020.7.2.0246
Saberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9–20. https://doi.org/10.1016/j.postharvbio.2017.11.003
Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3(1), 1–16. https://doi.org/10.1007/s12393-010-9031-3
Santos, K. L. dos, Panizzon, J., Cenci, M. M., Grabowski, G., & Jahno, V. D. (2020). Perdas e desperdícios de alimentos: reflexões sobre o atual cenário brasileiro. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.13419
Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5), 152. https://doi.org/10.3390/coatings8050152
Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124(1), 40–45. https://doi.org/10.1016/j.scienta.2009.12.004
Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science, 25(3), 295–314. https://doi.org/10.1080/19315260.2018.1510863
Silva, P. de C. e, Oliveira, A. C. S. de, Pereira, L. A. S., Valquíria, M., Carvalho, G. R., Miranda, K. W. E., Marconcini, J. M., & Oliveira, J. E. (2020). Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites, 41(3), 858–870. https://doi.org/10.1002/pc.25416
Stuchi, E. S., Girardi, E. A., Silva, S. R., Sempionato, O. R., Parolin, L. G., Müller, G. W., & Donadio, L. C. (2020). Desempenho de clones pré-imunizados de laranjeiras Valência e Natal no Norte do Estado de São Paulo. Citrus Research & Technology, 41. https://doi.org/10.4322/crt.20919
Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259, 117764. https://doi.org/10.1016/j.carbpol.2021.117764
Tavares, F. D. O., Pieretti, G. G., Antigo, J. L., Pozza, M. S. dos S., Scapim, M. R. da S., & Madrona, G. S. (2014). Cobertura comestível adicionada de óleos essenciais de orégano e alecrim para uso em ricota. Revista Do Instituto de Laticínios Cândido Tostes, 69(4), 249. https://doi.org/10.14295/2238-6416.v69i4.309
Valdés, A., Burgos, N., Jiménez, A., & Garrigós, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865–886. https://doi.org/10.3390/coatings5040865
Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Science and Technology, 52(2), 80–92. https://doi.org/10.1016/j.lwt.2013.02.004
Wang, F., Lu, M., Zhou, S., Lu, Z., & Ran, S. (2019). Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules, 24(15), 2682. https://doi.org/10.3390/molecules24152682
White, G. W., Katona, T., & Zodda, J. P. (1999). The use of high-performance size exclusion chromatography (HPSEC) as a molecular weight screening technique for polygalacturonic acid for use in pharmaceutical applications. Journal of Pharmaceutical and Biomedical Analysis, 20(6), 905–912. https://doi.org/10.1016/S0731-7085(99)00083-7
Xie, L., Hettiarachchy, N. S., Ju, Z. Y., Meullenet, J., Wang, H., Slavik, M. F., & Janes, M. E. (2002). Edible film coating to minimize eggshell breakage and reduce post-wash bacterial contamination measured by dye penetration in eggs. Journal of Food Science, 67(1), 280–284. https://doi.org/10.1111/j.1365-2621.2002.tb11398.x
Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46–53. https://doi.org/10.1016/j.postharvbio.2014.01.018
Yin, X. R., Xie, X. L., Xia, X. J., Yu, J. Q., Ferguson, I. B., Giovannoni, J. J., & Chen, K. S. (2016). Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal : For Cell and Molecular Biology, 86(5), 403–412. https://doi.org/10.1111/tpj.13178
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Vinicius Nelson Barboza de Souza, Nathaly Calister Moretto, Igor Gabriel Silva Oliveira, Caroline Pereira Moura Aranha, Silvia Maria Martelli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista publica seus artigos em Acesso Aberto sob licença Creative Commons (CC BY 4.0).
Você é livre para:
Compartilhar — copie e redistribua o material em qualquer meio ou formato para qualquer finalidade, inclusive comercial.
Adaptar – remixar, transformar e desenvolver o material para qualquer finalidade, até mesmo comercial.
O licenciante não pode revogar essas liberdades desde que você siga os termos da licença.
Nos seguintes termos:
Atribuição — Você deve dar o devido crédito, fornecer um link para a licença e indicar se foram feitas alterações. Você pode fazê-lo de qualquer maneira razoável, mas não de forma que sugira que o licenciante endossa você ou seu uso.
Sem restrições adicionais — Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas de fazerem qualquer coisa que a licença permita.
Avisos:
Você não precisa cumprir a licença para elementos do material de domínio público ou onde seu uso for permitido por uma exceção ou limitação aplicável.
Nenhuma garantia é dada. A licença pode não conceder todas as permissões necessárias para o uso pretendido. Por exemplo, outros direitos, como publicidade, privacidade ou direitos morais, podem limitar a forma como você utiliza o material.