Extração assistida por ultrassom utilizando o líquido iônico [BMIM][Cl] como método eficaz para recuperar compostos fenólicos do coproduto do processamento da goiaba

Extração assistida por ultrassom utilizando o líquido iônico [BMIM][Cl] como método eficaz para recuperar compostos fenólicos do coproduto do processamento da goiaba

Autores

DOI:

https://doi.org/10.58951/fstoday.v1i1.5

Palavras-chave:

Ultrassom, Líquido Iônico, Compostos Fenólicos, Coproduto de goiaba, Desenho Experimental

Resumo

Os líquidos iônicos (LI) representam uma alternativa inovadora aos solventes orgânicos clássicos para a recuperação de compostos fenólicos. Neste estudo, a influência de diferentes parâmetros na extração de compostos fenólicos do coproduto de goiaba vermelha utilizando o líquido iônico [BMIM][Cl] associado à extração assistida por ultrassom (ILUAE) foi comparada à extração metanólica. O LI [BMIM][Cl] foi sintetizado e caracterizado pelo ponto de fusão e fragmentos de MS/MS. Um delineamento fatorial completo 23 foi utilizado para avaliar os efeitos da concentração de [BMIM][Cl], tempo de extração e temperatura no teor fenólico total (TPC) e na atividade antioxidante (DPPH) dos extratos obtidos. Uma concentração de LI de 2,5 mol L-1, tempo de extração de 10 minutos a 35 °C apresentou a maior quantidade de TPC (4,01 mg g-1 de ácido gálico). A maior AA (8,77 mg g-1 de ácido ascórbico) foi alcançada usando uma concentração de LI de 2,5 mol L-1, tempo de extração de 40 minutos a 55 °C. Esses resultados foram superiores aos obtidos pela extração com metanol (1,58 mg g-1 de ácido gálico e 3,65 mg g-1 de ácido ascórbico, respectivamente). Os resultados indicaram que o método inovador de extração usando ILUAE foi rápido, direto e eficaz para recuperar compostos bioativos valiosos do coproduto de goiaba vermelha sem o uso de solventes orgânicos.

Referências

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011 DOI: https://doi.org/10.1016/j.crfs.2021.03.011

Almulaiky, Y., Zeyadi, M., Saleh, R., Baothman, O., Al-shawafi, W., & Al-Talhi, H. (2018). Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16, 90–97. https://doi.org/10.1016/j.bcab.2018.07.025 DOI: https://doi.org/10.1016/j.bcab.2018.07.025

Belwal, T., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Pande, V. (2016). Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 207, 115–124. https://doi.org/10.1016/j.foodchem.2016.03.081 DOI: https://doi.org/10.1016/j.foodchem.2016.03.081

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Brazilian Institute for Geography and Statistics. (2019). Municipal Agricultural Production - PAM. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=resultados

Camelo, L. C. L., Lana, G. R. Q., Santos, M. J. B. dos, Camelo, Y. A. R. P., Marinho, A. L., Rabello, C. B.-V., Camelo, L. C. L., Lana, G. R. Q., Santos, M. J. B. dos, Camelo, Y. A. R. P., Marinho, A. L., & Rabello, C. B.-V. (2015). INCLUSÃO DE FARELO DE GOIABA NA DIETA DE CODORNAS EUROPÉIAS. Ciência Animal Brasileira, 16(3), 343–349. https://doi.org/10.1590/1089-6891v16i324342 DOI: https://doi.org/10.1590/1089-6891v16i324342

Campoli, S. S., Rojas, M. L., do Amaral, J. E. P. G., Canniatti-Brazaca, S. G., & Augusto, P. E. D. (2018). Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594–601. https://doi.org/10.1016/j.foodchem.2018.06.127 DOI: https://doi.org/10.1016/j.foodchem.2018.06.127

Cao, J., Peng, L.-Q., Du, L.-J., Zhang, Q.-D., & Xu, J.-J. (2017). Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Analytica Chimica Acta, 963, 24–32. https://doi.org/10.1016/j.aca.2017.01.063 DOI: https://doi.org/10.1016/j.aca.2017.01.063

Claus, J., Sommer, F. O., & Kragl, U. (2018). Ionic liquids in biotechnology and beyond. Solid State Ionics, 314, 119–128. https://doi.org/10.1016/j.ssi.2017.11.012 DOI: https://doi.org/10.1016/j.ssi.2017.11.012

Del’Arco, A. P. W. T., & Sylos, C. M. de. (2018). Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava l.) ‘Paluma’ cv. Revista Brasileira de Fruticultura, 40(2). https://doi.org/10.1590/0100-29452018011 DOI: https://doi.org/10.1590/0100-29452018011

Du, F.-Y., Xiao, X.-H., & Li, G.-K. (2007). Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. Journal of Chromatography A, 1140(1–2), 56–62. https://doi.org/10.1016/j.chroma.2006.11.049 DOI: https://doi.org/10.1016/j.chroma.2006.11.049

Du, F.-Y., Xiao, X.-H., & Li, G.-K. (2011). Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomedical Chromatography, 25(4), 472–478. https://doi.org/10.1002/bmc.1470 DOI: https://doi.org/10.1002/bmc.1470

Fang, D., Cheng, J., Gong, K., Shi, Q.-R., Zhou, X.-L., & Liu, Z.-L. (2007). A green and novel procedure for the preparation of ionic liquid. https://doi.org/10.1016/j.jfluchem.2007.09.004 DOI: https://doi.org/10.1002/chin.200821146

Faustino, N., Pinto, P. C. A. G., Passos, M. L. C., & Saraiva, M. L. M. F. S. (2017). Automatic ionic liquid-enhanced membrane microextraction for the determination of melamine in food samples. Food Control, 79, 162–168. https://doi.org/10.1016/j.foodcont.2017.03.040 DOI: https://doi.org/10.1016/j.foodcont.2017.03.040

Ferreira, B. L., Beik, J., Alves, S., Henrique, F., Sauer, E., Chornobaid, C., Bowles, S., & Chaves, E. (2020). EXTRAÇÃO ASSISTIDA POR ULTRASSOM PARA DETERMINAÇÃO DE LIPÍDEOS EM ALIMENTOS: UM EXPERIMENTO DE LABORATÓRIO. Química Nova. https://doi.org/10.21577/0100-4042.20170592 DOI: https://doi.org/10.21577/0100-4042.20170592

Ferreira, B. L., Chaves, E. S., Vialich, J., & Sauer, E. (2014). Extração assistida por ultrassom para determinação de Fe, K e Na em amostras de achocolatado em pó. Brazilian Journal of Food Technology, 17(3), 236–242. https://doi.org/10.1590/1981-6723.1514 DOI: https://doi.org/10.1590/1981-6723.1514

Flores, G., Wu, S.-B., Negrin, A., & Kennelly, E. J. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chemistry, 170, 327–335. https://doi.org/10.1016/j.foodchem.2014.08.076 DOI: https://doi.org/10.1016/j.foodchem.2014.08.076

Goti, A., & Cardona, F. (2013). Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes. In Green Chemical Reactions (Vol. 53, Issue 9). https://doi.org/10.1007/978-1-4020-8457-7_9 DOI: https://doi.org/10.1007/978-1-4020-8457-7_9

Gruz, A. P. G., Sousa, C. G. S. e, Torres, A. G., Freitas, S. P., & Cabral, L. M. C. (2013). Recuperação de compostos bioativos a partir do bagaço de uva. Revista Brasileira de Fruticultura, 35(4), 1147–1157. https://doi.org/10.1590/S0100-29452013000400026 DOI: https://doi.org/10.1590/S0100-29452013000400026

Hassan, C., Rosmani, C., Sulaiman, N., Merian, N., & Emami, D. (2016). Polyphenols Recovery from Tropical Fruits (Pink Guava) Wastes via Ultra-Filtration Membrane Technology Application by Optimum Solvent Selection. In J. Chem. Chem. Eng (Vol. 35, Issue 3). http://websisni.bsn.go.id/index.php?/sni_main/sni/index_simple.

Hwang, J., Park, H., Choi, D. W., Nam, K. T., & Lim, K.-M. (2018). Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models. Toxicology in Vitro, 46, 194–202. https://doi.org/10.1016/j.tiv.2017.09.025 DOI: https://doi.org/10.1016/j.tiv.2017.09.025

Koriem, K. M. M., Arbid, M. S., & Saleh, H. N. (2019). Antidiarrheal and protein conservative activities of Psidium guajava in diarrheal rats. Journal of Integrative Medicine, 17(1), 57–65. https://doi.org/10.1016/j.joim.2018.12.001 DOI: https://doi.org/10.1016/j.joim.2018.12.001

Kou, X., Ke, Y., Wang, X., Rahman, M. R. T., Xie, Y., Chen, S., & Wang, H. (2018). Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger ( Zingiber officinale Roscoe). Food Chemistry, 257, 223–229. https://doi.org/10.1016/j.foodchem.2018.02.125 DOI: https://doi.org/10.1016/j.foodchem.2018.02.125

Lima, R. da S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2019). May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 451–459. https://doi.org/10.1016/j.foodres.2018.10.053 DOI: https://doi.org/10.1016/j.foodres.2018.10.053

Lima, R. da S., Nunes, I. L., & Block, J. M. (2020). Ultrasound-Assisted Extraction for the Recovery of Carotenoids from Guava’s Pulp and Waste Powders. Plant Foods for Human Nutrition, 75(1), 63–69. https://doi.org/10.1007/s11130-019-00784-0 DOI: https://doi.org/10.1007/s11130-019-00784-0

Lou, Z., Wang, H., Zhu, S., Chen, S., Zhang, M., & Wang, Z. (2012). Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Analytica Chimica Acta, 716, 28–33. https://doi.org/10.1016/j.aca.2011.03.012 DOI: https://doi.org/10.1016/j.aca.2011.03.012

Ma, W., Lu, Y., Hu, R., Chen, J., Zhang, Z., & Pan, Y. (2010). Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta, 80(3), 1292–1297. https://doi.org/10.1016/j.talanta.2009.09.027 DOI: https://doi.org/10.1016/j.talanta.2009.09.027

Magiera, S., & Sobik, A. (2017). Ionic liquid-based ultrasound-assisted extraction coupled with liquid chromatography to determine isoflavones in soy foods. Journal of Food Composition and Analysis, 57, 94–101. https://doi.org/10.1016/j.jfca.2016.12.016 DOI: https://doi.org/10.1016/j.jfca.2016.12.016

Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397–C2403. https://doi.org/10.1111/1750-3841.13077 DOI: https://doi.org/10.1111/1750-3841.13077

Martins, N., Barros, L., & Ferreira, I. C. F. R. (2016). In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends in Food Science & Technology, 48, 1–12. https://doi.org/10.1016/j.tifs.2015.11.008 DOI: https://doi.org/10.1016/j.tifs.2015.11.008

Martins, P. L. G., Braga, A. R., & de Rosso, V. V. (2017). Can ionic liquid solvents be applied in the food industry? Trends in Food Science and Technology, 66, 117–124. https://doi.org/10.1016/j.tifs.2017.06.002 DOI: https://doi.org/10.1016/j.tifs.2017.06.002

Martins, P. L. G., & de Rosso, V. V. (2016). Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound-assisted completely solvent-free method. Food Research International, 82, 156–164. https://doi.org/10.1016/j.foodres.2016.01.015 DOI: https://doi.org/10.1016/j.foodres.2016.01.015

McCook-Russell, K. P., Nair, M. G., Facey, P. C., & Bowen-Forbes, C. S. (2012). Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chemistry, 134(2), 1069–1073. https://doi.org/10.1016/j.foodchem.2012.03.018 DOI: https://doi.org/10.1016/j.foodchem.2012.03.018

Milani, L. P. G., Garcia, N. O. S., Morais, M. C., Dias, A. L. S., Oliveira, N. L., & Conceição, E. C. (2018). Extract from byproduct Psidium guajava standardized in ellagic acid: additivation of the in vitro photoprotective efficacy of a cosmetic formulation. Revista Brasileira de Farmacognosia, 28(6), 692–696. https://doi.org/10.1016/j.bjp.2018.08.005 DOI: https://doi.org/10.1016/j.bjp.2018.08.005

Moon, P., Fu, Y., Bai, J., Plotto, A., Crane, J., & Chambers, A. (2018). Assessment of fruit aroma for twenty-seven guava ( Psidium guajava ) accessions through three fruit developmental stages. Scientia Horticulturae, 238, 375–383. https://doi.org/10.1016/j.scienta.2018.04.067 DOI: https://doi.org/10.1016/j.scienta.2018.04.067

Murador, D. C., Braga, A. R. C., Martins, P. L. G., Mercadante, A. Z., & de Rosso, V. V. (2019). Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Research International, 126, 108653. https://doi.org/10.1016/j.foodres.2019.108653 DOI: https://doi.org/10.1016/j.foodres.2019.108653

Narenderan, S. T., Meyyanathan, S. N., & Karri, V. V. S. R. (2019). Experimental design in pesticide extraction methods: A review. Food Chemistry, 289, 384–395. https://doi.org/10.1016/j.foodchem.2019.03.045 DOI: https://doi.org/10.1016/j.foodchem.2019.03.045

Niño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. In South African Journal of Botany (Vol. 111, pp. 161–169). Elsevier. https://doi.org/10.1016/j.sajb.2017.03.016 DOI: https://doi.org/10.1016/j.sajb.2017.03.016

Santos, C. M. dos, Mesquita, L. M. de S., Braga, A. R. C., & Rosso, V. V. de. (2021). Red Propolis as a Source of Antimicrobial Phytochemicals: Extraction Using High-Performance Alternative Solvents. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.659911 DOI: https://doi.org/10.3389/fmicb.2021.659911

Santos, W. N. L. dos, Sauthier, M. C. da S., Santos, A. M. P., Santana, D. de A., Azevedo, R. S. A., & Caldas, J. da C. (2017). Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 583–592. https://doi.org/10.1016/j.microc.2017.04.029 DOI: https://doi.org/10.1016/j.microc.2017.04.029

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018 DOI: https://doi.org/10.1016/j.jff.2015.06.018

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047 DOI: https://doi.org/10.1016/j.jff.2015.01.047

Sheldon, R. (2001). Catalytic reactions in ionic liquids Historical development. https://doi.org/10.1039/b107270f DOI: https://doi.org/10.1039/b107270f

Silva, C., Garcia, V. A. dos S., & Franciscato, L. M. S. do S. (2016). Extração Assistida por Ultrassom de Compostos Bioativos das Cascas de Lichia (Litchi Chinensis Sonn.). Revista Ciências Exatas e Naturais, 18(1), 81–96. https://pdfs.semanticscholar.org/6e96/75267b44bcfce2207214a8df241cfaa8dedd.pdf DOI: https://doi.org/10.5935/RECEN.2016.01.06

Silva, R. W. V. da, Martins, G. M. G., Nascimento, R. A. do, Viana, A. F. da S., Aguiar, F. S. de, & Silva, B. A. da. (2019). Uso da metodologia de superfície de resposta na otimização da extração de compostos fenólicos da casca dos frutos de Hymenaea courbaril L. (Jatobá). Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.08918 DOI: https://doi.org/10.1590/1981-6723.08918

Sousa, M. S. B., Vieira, L. M., & Lima, A. de. (2011). Fenólicos totais e capacidade antioxidante in vitro de resíduos de polpas de frutas tropicais. Brazilian Journal of Food Technology, 14(03), 202–210. https://doi.org/10.4260/BJFT2011140300024 DOI: https://doi.org/10.4260/BJFT2011140300024

Souza, H. A. de, Natale, W., & Rozane, D. E. (2011). Avaliação agronômica da aplicação do resíduo da indústria processadora de goiabas em pomar comercial de goiabeiras. Revista Brasileira de Ciência Do Solo, 35(3), 969–979. https://doi.org/10.1590/S0100-06832011000300031 DOI: https://doi.org/10.1590/S0100-06832011000300031

Teixeira, G. L., Maciel, L. G., Mazzutti, S., Barbi, R. C. T., Ribani, R. H., Ferreira, S. R. S., & Block, J. M. (2021). Sequential green extractions based on supercritical carbon dioxide and pressurized ethanol for the recovery of lipids and phenolics from Pachira aquatica seeds. Journal of Cleaner Production, 306, 127223. https://doi.org/10.1016/j.jclepro.2021.127223 DOI: https://doi.org/10.1016/j.jclepro.2021.127223

Tong, R., Zhang, L., Yang, X., Liu, J., Zhou, P., & Li, J. (2019). Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. Journal of Cleaner Production, 208, 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195 DOI: https://doi.org/10.1016/j.jclepro.2018.10.195

Torres, S., Pandey, A., & Castro, G. R. (2011). Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnology Advances, 29(4), 442–452. https://doi.org/10.1016/j.biotechadv.2011.04.002 DOI: https://doi.org/10.1016/j.biotechadv.2011.04.002

Tuzen, M., Uluozlu, O. D., Mendil, D., Soylak, M., Machado, L. O. R., dos Santos, W. N. L., & Ferreira, S. L. C. (2018). A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chemistry, 245, 380–384. https://doi.org/10.1016/j.foodchem.2017.10.115 DOI: https://doi.org/10.1016/j.foodchem.2017.10.115

Vo Dinh, T., Saravana, P. S., Woo, H. C., & Chun, B. S. (2018). Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology, 196, 287–299. https://doi.org/10.1016/j.seppur.2017.06.009 DOI: https://doi.org/10.1016/j.seppur.2017.06.009

Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/jfbc.13394 DOI: https://doi.org/10.1111/jfbc.13394

Zhang, S., Sun, N., He, X., Lu, X., & Zhang, X. (2006). Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 35(4), 1475–1517. https://doi.org/10.1063/1.2204959 DOI: https://doi.org/10.1063/1.2204959

Downloads

Publicado

2023-01-24

Como Citar

Ferreira, B. L., Bohn, V. F., Waltrich, L., Block, J. M., Granato, D., & Nunes, I. L. (2023). Extração assistida por ultrassom utilizando o líquido iônico [BMIM][Cl] como método eficaz para recuperar compostos fenólicos do coproduto do processamento da goiaba. Food Science Today, 1(1). https://doi.org/10.58951/fstoday.v1i1.5

Edição

Seção

Artigo Original
Loading...