Resíduo de glifosato em mel e impactos em colmeias de abelhas africanizadas em condições de campo

Resíduo de glifosato em mel e impactos em colmeias de abelhas africanizadas em condições de campo

Autores

DOI:

https://doi.org/10.58951/dataset.v1i1.11

Palavras-chave:

Roundup®, Contaminação, Apis mellifera, Colônia, Sobrevivência, Pesticidas

Resumo

O mel e outros produtos das abelhas podem conter resíduos de diferentes substâncias, incluindo pesticidas, o que é considerado um problema de saúde pública. Além disso, caracterizam riscos para a saúde de Apis mellifera, que tem mostrado uma diminuição crescente em suas populações. Existem muitos protocolos para identificar pesticidas em produtos das abelhas, que, em geral, são matrizes complexas cujos resultados de investigações de rotina em laboratórios de controle raramente são divulgados. Neste sentido, o objetivo do presente estudo foi determinar a presença de resíduos de glifosato e seu metabólito ácido aminometilfosfônico (AMPA) no mel, bem como seu efeito na força da colmeia de A. mellifera. Amostras foram coletadas de colmeias experimentalmente expostas a alimentos contendo uma dose subletal de Roundup® e conduzidas por cromatografia líquida de interação hidrofílica acoplada à espectrometria de massas sequencial (HILIC-MS/MS). O teor de AMPA foi inferior ao limite de detecção do método em amostras de mel de colmeias que receberam alimentos contendo o herbicida. Foi possível quantificar o glifosato uma semana após a última alimentação artificial (R1 8,45 ± 1,09 µg g−1; R2 8,15 ± 2,14 µg g−1; R3 23,90 ± 2,95 µg g−1). Em uma amostra de colmeia alimentada por mais de quatro semanas, o glifosato estava presente em concentrações mais baixas (3,12 ± 0,89 µg g−1) sem detecção de AMPA. A partir da análise da força das colmeias, observamos uma diminuição na população de indivíduos adultos e na área de cria, a ausência de uma rainha e a falta de construção de células reais pelas operárias nas colmeias do tratamento com Roundup® em comparação com o grupo de controle, no qual as colmeias permaneceram com tamanho de rainha, alta população de adultos e cria, e estoque de alimentos. Embora presente, o glifosato não sofreu degradação no mel durante o período avaliado. Assim, poderíamos inferir que a presença de Roundup® na alimentação das abelhas pode estar presente no mel, representando um risco para a saúde dos consumidores e danos econômicos aos apicultores. Este é o primeiro estudo de longo prazo que avaliou o efeito na força da colmeia de resíduos de herbicidas à base de glifosato presentes no pólen oferecido às abelhas, contribuindo para a compreensão do modo de ação do Roundup® em diferentes aspectos que afetam a sobrevivência das colônias em condições de campo.

Referências

Al-Waili, N., Salom, K., Al-Ghamdi, A., & Ansari, M. J. (2012). Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. The Scientific World Journal, 2012(Table 1), 1–9. https://doi.org/10.1100/2012/930849

Almasri, H., Liberti, J., Brunet, J. L., Engel, P., & Belzunces, L. P. (2022). Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-08009-2

Anastassiades, M., Kolberg, D. I., Barth, A., Benkenstein, E., Dörk, D., Eichhorn, E., Zechmann, S., Mack, D., Wildgrube, C., & Sigalov, I. (2016). Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS / MS involving simultaneous extraction with methanol (QuPPe-Method) Content quoise. 2(October), 1–68.

Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 1–15. https://doi.org/10.1186/s12302-016-0070-0

Berg, C. J., Peter King, H., Delenstarr, G., Kumar, R., Rubio, F., & Glaze, T. (2018). Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE, 13(7), 1–18. https://doi.org/10.1371/journal.pone.0198876

Bergero, M., Bosco, L., Giacomelli, A., Angelozzi, G., Perugini, M., & Merola, C. (2021). Agrochemical contamination of honey and bee bread collected in the piedmont region, Italy. Environments - MDPI, 8(7), 1–10. https://doi.org/10.3390/environments8070062

Blot, N., Veillat, L., Rouzé, R., & Delatte, H. (2019). Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE, 14(4), 1–16. https://doi.org/10.1371/journal.pone.0215466

Cadore, A., Faita, M., Pereira, E., Bento, G., Lima, V., Steiner, J., & Poltronieri, A. (2022). Influência do uso e da cobertura do solo sobre a diversidade e a riqueza de abelhas na Ilha de Santa Catarina. Acta Biológica Catarinense, 9(2), 69–80. https://doi.org/10.21726/abc.v9i2.1596

Calatayud-Vernich, P., Calatayud, F., Simó, E., Pascual Aguilar, J. A., & Picó, Y. (2019). A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere, 232, 471–480. https://doi.org/10.1016/j.chemosphere.2019.05.170

Calatayud-Vernich, P., Calatayud, F., Simó, E., & Picó, Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062

Cardozo, M. M. Impactos da farinha de soja geneticamente modificada (Intacta RR2 PRO®) e do herbicida Roundup® sobre colmeias de Apis mellifera L. Master Dissertation - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Florianópolis, 2017. 143 p.

Chaves, A., Faita, M. R., Ferreira, B. L., Poltronieri, A. S., & Nodari, R. O. (2020). Effects of glyphosate-based herbicide on royal jelly production of Apis mellifera (Hymenoptera: Apidae) in field conditions. Journal of Apicultural Research, 0(0), 1–3. https://doi.org/10.1080/00218839.2020.1844463

Chaves, A., Faita, M. R., & Nodari, R. O. (2023). Effects of fungicides on the ultrastructure of the hypopharyngeal glands and the strength of the hives of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Toxicology and Applied Pharmacology, 459, 116340. https://doi.org/10.1016/J.TAAP.2022.116340

Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., & Oakeshott, J. G. (2006). A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15(5), 615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x

Costa, R. C., & Cruz-Landim, C. Da. (1999). Occurrence and morphometry of the hypopharyngeal glands in Scaptotrigona postica Lat. (Hymenoptera, Apidae, Meliponinae). Bioscience Journal, 24(1), 97–102.

Dallegrave, E., Mantese, F. D., Oliveira, R. T., Andrade, A. J. M., Dalsenter, P. R., & Langeloh, A. (2007). Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Archives of Toxicology, 81(9), 665–673. https://doi.org/10.1007/s00204-006-0170-5

de Souza, A. P. F., Rodrigues, N. R., & Reyes, F. G. R. (2020). Glyphosate and aminomethylphosphonic acid (AMPA) residues in Brazilian honey. Food Additives and Contaminants: Part B Surveillance, 00(00), 1–8. https://doi.org/10.1080/19393210.2020.1855676

Delaplane, K. S., Van Der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(1). https://doi.org/10.3896/IBRA.1.52.1.03

El Agrebi, N., Tosi, S., Wilmart, O., Scippo, M. L., de Graaf, D. C., & Saegerman, C. (2020). Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Science of the Total Environment, 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312

Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z., & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x

Faita, M. R., Cardozo, M. M., Amandio, D. T. T., Orth, A. I., & Nodari, R. O. (2020). Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. Journal of Apicultural Research, 60, 1–11. https://doi.org/10.1080/00218839.2020.1736782

Faita, M. R., Chaves, A., Corrêa, C. C. G., Silveira, V., & Nodari, R. O. (2022). Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 292, 133334. https://doi.org/10.1016/j.chemosphere.2021.133334

Faita, M. R., Oliveira, E. de M., Alves, V. V., Orth, A. I., & Nodari, R. O. (2018). Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup®. Chemosphere, 211, 566–572. https://doi.org/10.1016/j.chemosphere.2018.07.189

Franco, R., Li, S., Rodriguez-Rocha, H., Burns, M., & Panayiotidis, M. I. (2010). Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chemico-Biological Interactions, 188(2), 289–300. https://doi.org/10.1016/j.cbi.2010.06.003

Gérez, N., Pérez-Parada, A., Cesio, M. V., & Heinzen, H. (2017). Occurrence of pesticide residues in candies containing bee products. Food Control, 72, 293–299. https://doi.org/10.1016/j.foodcont.2015.10.006

Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120. https://doi.org/10.1007/978-1-4612-1156-3_2

Goulson, D., Nicholls, E., Botias, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957–1255957. https://doi.org/10.1126/science.1255957

Green, J. M. (2014). Current state of herbicides in herbicide-resistant crops. Pest Management Science, 70(9), 1351–1357. https://doi.org/10.1002/ps.3727

Herbert, L. T., Vázquez, D. E., Arenas, A., & Farina, W. M. (2014). Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. Journal of Experimental Biology, 217(19), 3457–3464. https://doi.org/10.1242/jeb.109520

Huang, Z. Y., Otis, G. W., & Teal, P. E. A. (1989). Nature of brood signal activating the protein-synthesis of hypopharyngeal gland in honey bees, Apis mellifera (Apidae, Hymenoptera). Apidologie, 20(6), 455–464. https://doi.org/10.1051/apido:19890601

Karise, R., Raimets, R., Bartkevics, V., Pugajeva, I., Pihlik, P., Keres, I., Williams, I. H., Viinalass, H., & Mänd, M. (2017). Are pesticide residues in honey related to oilseed rape treatments? Chemosphere, 188, 389–396. https://doi.org/10.1016/j.chemosphere.2017.09.013

Kiljanek, T., Niewiadowska, A., Gaweł, M., Semeniuk, S., Borzęcka, M., Posyniak, A., & Pohorecka, K. (2017). Multiple pesticide residues in live and poisoned honeybees – Preliminary exposure assessment. Chemosphere, 175, 36–44. https://doi.org/10.1016/j.chemosphere.2017.02.028

Kiljanek, T., Niewiadowska, A., Semeniuk, S., Gaweł, M., Borzęcka, M., & Posyniak, A. (2016). Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry—Honeybee poisoning incidents. Journal of Chromatography A, 1435, 100–114. https://doi.org/10.1016/j.chroma.2016.01.045

Liao, L.-H., Wu, W.-Y., & Berenbaum, M. R. (2017). Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Scientific Reports, 7(1), 15924. https://doi.org/10.1038/s41598-017-15066-5

Matin, G., Kargar, N., & Buyukisik, H. B. (2016). Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecological Engineering, 90, 331–335. https://doi.org/10.1016/j.ecoleng.2016.01.035

Medina-Pastor, P., & Triacchini, G. (2020). The 2018 European Union report on pesticide residues in food. EFSA Journal, 18(4), 1–103. https://doi.org/10.2903/j.efsa.2020.6057

Mesnage, R., Bernay, B., & Séralini, G. E. (2012). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 314(2–3), 122–128. https://doi.org/10.1016/j.tox.2012.09.006

Mitchell, E. A. D., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., & Aebi, A. (2017). A worldwide survey of neonicotinoids in honey. Science, 358(6359). https://doi.org/10.1126/science.aan3684

Moritz, R. F. A., & Fuchs, S. (1998). Organization of honeybee colonies: Characteristics and consequences of a superorganism concept. Apidologie, 29(1–2), 7–21. https://doi.org/10.1051/apido:19980101

Motta, E. V. S., Mak, M., De Jong, T. K., Powell, J. E., O’Donnell, A., Suhr, K. J., Riddington, I. M., & Moran, N. A. (2020). Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Applied and Environmental Microbiology, 86(18). https://doi.org/10.1128/AEM.01150-20

Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115

Mullin, C. A., Fine, J. D., Reynolds, R. D., & Frazier, M. T. (2016). Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Frontiers in Public Health, 4(92), 1–8. https://doi.org/10.3389/fpubh.2016.00092

Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., & Simonds, R. (2010). high levels of miticides and agrochemicals in North American apiaries : implications for honey bee health. PLoS ONE, 5(3). https://doi.org/10.1371/journal.pone.0009754

Odemer, R., Alkassab, A. T., Bischoff, G., Frommberger, M., Wernecke, A., Wirtz, I. P., ... & Odemer, F. (2020). Chronic high glyphosate exposure delays individual worker bee (Apis mellifera L.) development under field conditions. Insects, 11(10), 664. https://doi.org/10.3390/insects11100664

Othman, N. H. (2012). Honey and cancer: Sustainable inverse relationship particularly for developing nations-a review. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/410406

Pacífico da Silva, I., Oliveira, F. A. S., Pedroza, H. P., Gadelha, I. C. N., Melo, M. M., & Soto-Blanco, B. (2015). Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie, 46(6), 703–715. https://doi.org/10.1007/s13592-015-0360-3

Pareja, L., Jesús, F., Heinzen, H., Hernando, M. D., Rajski, Ł., & Fernández-Alba, A. R. (2019). Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Analytical Methods, 11(16), 2123–2128. https://doi.org/10.1039/c9ay00543a

Parrón, T., Requena, M., Hernández, A. F., & Alarcón, R. (2011). Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicology and Applied Pharmacology, 256(3), 379–385. https://doi.org/10.1016/j.taap.2011.05.006

Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., & VanEngelsdorp, D. (2013). crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE, 8(7), e70182. https://doi.org/10.1371/journal.pone.0070182

PPDB (Pesticide Properties DataBase), 2022. Glyphosate (Ref: Mon 0573). University of Hertfordshire. Available at: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/373.htm. Accessed on December 20, 2022).

Raimets, R., Bontšutšnaja, A., Bartkevics, V., Pugajeva, I., Kaart, T., Puusepp, L., Pihlik, P., Keres, I., Viinalass, H., Mänd, M., & Karise, R. (2020). Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory. Chemosphere, 238(August 2019). https://doi.org/10.1016/j.chemosphere.2019.124555

Romano, R. M., Romano, M. A., Bernardi, M. M., Furtado, P. V., & Oliveira, C. A. (2010). Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Archives of Toxicology, 84(4), 309–317. https://doi.org/10.1007/s00204-009-0494-z

Rondeau, G., Sánchez-Bayo, F., Tennekes, H. A., Decourtye, A., Ramírez-Romero, R., & Desneux, N. (2014). Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Scientific Reports, 4, 1–8. https://doi.org/10.1038/srep05566

Rubio, F., Guo, E., & Kamp, L. (2014). Survey of glyphosate residues in honey, corn and soy products. Journal of Environmental & Analytical Toxicology, 05(01), 1–8. https://doi.org/10.4172/2161-0525.1000249

Rundlöf, M., Andersson, G. K. S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., Jonsson, O., Klatt, B. K., Pedersen, T. R., Yourstone, J., & Smith, H. G. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521(7550), 77–80. https://doi.org/10.1038/nature14420

Sanchez-Bayo, F., & Goka, K. (2014). Pesticide residues and bees - A risk assessment. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094482

Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? - A brief review. Environment International 89–90, 7-11. https://doi.org/10.1016/j.envint.2016.01.009

Saurat, D., Raffy, G., Bonvallot, N., Monfort, C., Fardel, O., Glorennec, P., Chevrier, C., & Le Bot, B. (2022). Determination of glyphosate and AMPA in indoor settled dust by hydrophilic interaction liquid chromatography with tandem mass spectrometry and implications for human exposure. Journal of Hazardous Materials, 130654. https://doi.org/10.1016/J.JHAZMAT.2022.130654

Spurgeon, D., Hesketh, H., Lahive, E., Svendsen, C., Baas, J., Robinson, A., Horton, A., & Heard, M. (2016). Chronic oral lethal and sub-lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris) Centre for Ecology & Hydrology. EFSA Supporting Publications, 13(9). https://doi.org/10.2903/sp.efsa.2016.EN-1076

Thompson, H. M., Levine, S. L., Doering, J., Norman, S., Manson, P., Sutton, P., & von Mérey, G. (2014). Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integrated Environmental Assessment and Management, 10(3), 463–470. https://doi.org/10.1002/ieam.1529

Thompson, T. S., van den Heever, J. P., & Limanowka, R. E. (2019). Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 36(3), 434–446. https://doi.org/10.1080/19440049.2019.1577993

Traynor, K. S., Pettis, J. S., Tarpy, D. R., Mullin, C. A., Frazier, J. L., Frazier, M., & vanEngelsdorp, D. (2016). In-hive pesticide exposome: assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Scientific Reports. https://doi.org/10.1038/srep33207

Tsvetkov, N., Sood, K., Patel, H. S., Malena, D. A., Gajiwala, P. H., Maciukiewicz, P., Fournier, V., & Zayed, A. (2017). Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356(6345), 1395–1397. https://doi.org/10.1126/science.aam7470

Wehling, M., Ohe, W. V, Brasse, D., Forster, R., Oomen, P. A., & Thompson, H. M. (2009). Colony losses - interactions of plant protection products and other factors. Julius-Kühn-Archiv, 423, 153–154.

Wiest, L., Buleté, A., Giroud, B., Fratta, C., Amic, S., Lambert, O., Pouliquen, H., & Arnaudguilhem, C. (2011). Multi-residue analysis of 80 environmental contaminants in honeys , honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 1218(34), 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079

Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L., Sárospataki, M., Saure, C., Edwards, M., Genersch, E., Knäbe, S., & Pywell, R. F. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345), 1393–1395. https://doi.org/10.1126/science.aaa1190

Yoshioka, N., Asano, M., Kuse, A., Mitsuhashi, T., Nagasaki, Y., & Ueno, Y. (2011). Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography-tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A, 1218(23), 3675–3680. https://doi.org/10.1016/j.chroma.2011.04.021

Zhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2017). Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera ). PLoS ONE 12(5): e0176837. https://doi.org/10.1371/journal.pone.0176837.

Zioga, E., White, B., & Stout, J. C. (2022). Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12179

Zoller, O., Rhyn, P., Rupp, H., Zarn, J. A., & Geiser, C. (2018). Glyphosate residues in Swiss market foods: monitoring and risk evaluation. Food Additives and Contaminants: Part B Surveillance, 11(2), 83–91. https://doi.org/10.1080/19393210.2017.1419509

Downloads

Publicado

27/01/2023

Como Citar

Faita, M. R., Alves, V. R., Micke, G. A., Orth, A. I., & Nodari, R. O. (2023). Resíduo de glifosato em mel e impactos em colmeias de abelhas africanizadas em condições de campo. Dataset Reports, 1(1). https://doi.org/10.58951/dataset.v1i1.11

Edição

Seção

Artigo Original
Loading...