Assessing the impact of essential oil blends as antibiotic alternatives on nutritional and metabolic parameters in non-forage-based diet-fed Nellore steers
DOI:
https://doi.org/10.58951/dataset.2023.61Keywords:
additives, cinnamaldehyde, diallyl disulfide, monensin, ruminal fermentation, virginamycinAbstract
Essential oils (EO) are antimicrobials with the potential to replace conventional ones in ruminant diets. Despite the advantage of the EO serving markets that prohibit antibiotics in animal nutrition, the results that prove their effectiveness vary with the type of EO, dose, diet, etc. This study aimed to assess the effects of a blend of essential oil, based on cinnamaldehyde and diallyl disulfide, associated or not with antibiotics on nutritional and metabolic parameters for feedlot Nellore steers fed non-forage-based diet. Five Nellore steers were distributed in a 5×5 simple Latin square design. The treatments assessed were a basal no-roughage diet with the inclusion of monensin (MON), monensin + virginiamycin (MV), monensin + blend of EO (MEO25), monensin + blend of EO (MEO35), and a blend of essential oil (EO). Feed, orts, feces, ruminal fluid, blood, and urine samples were utilized to assess the intake, digestibility, ruminal pH, ruminal NH3, nitrogen balance, microbial nitrogen synthesis, fecal cortisol metabolites, blood glucose, and D and L-lactate. No difference (P > 0.05) has been observed in additives in intake, nutrient digestibility, and ingestive behavior. There was a trend (P = 0.0553) of the effect of additives on ruminal pH, and the MV presented the highest value. No difference (P > 0.05) for the ruminal NH3, microbial N synthesis, and nitrogen balance concentration was also verified. The blood glucose and blood lactate concentration were not affected (P > 0.05) by additives. The blend of essential oils based on cinnamaldehyde and diallyl disulfide could then be indicated in replacement or association with antibiotics in a non-forage-based diet for Nellore steers.
References
Aferri, G., Negrão, J. A., Pereira, A. S. C., Corte, R. R. P. S., Silva, S. L., & Leme, P. R. (2019). Blood parameter of Nellore steers submitted to different levels of feed intake. Boletim de Indústria Animal, 76, 1–10. https://doi.org/10.17523/bia.2019.v76.e1449
Aldrighi, J., Branco, R. H., Cyrillo, J. N. S. G., Magnani, E., Nascimento, C. F., & Mercadante, M. E. Z. (2018). Avaliação de intervalos de tempo para registro do comportamento ingestivo de bovinos confinados individualmente. Boletim de Indústria Animal, 75, 1–7. https://doi.org/10.17523/bia.2018.v75.e1412
Allen, M. S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80(7), 1447–1462. https://doi.org/10.3168/jds.S0022-0302(97)76074-0
Allen, M. S. (2020). Review: Control of feed intake by hepatic oxidation in ruminant animals: Integration of homeostasis and homeorhesis. Animal, 14(S1), S55–S64. https://doi.org/10.1017/S1751731119003215
Alzahal, O., Kebreab, E., France, J., & McBride, B. W. (2007). A mathematical approach to predicting biological values from ruminal pH measurements. Journal of Dairy Science, 90(8), 3777–3785. https://doi.org/10.3168/jds.2006-534
AOAC. (1990). Association of Official Analytical Chemists. Official Methods of Analysis. 15th ed. AOAC, Washington, DC.
AOAC. (2002). Association of Official Analytical Chemists International. Official Methods of Analysis of AOAC International, 17th ed. Washington, D.C.
AOCS. (2005). Rapid determination of oil/fat utilizing high-temperature solvent extraction. AOCS Official Procedure Am 5-04.
Baile, C. A., McLaughlin, C. L., Potter, E. L., & Chalupa, W. (1979). Feeding behavior changes of cattle during introduction of monensin with roughage or concentrate diets. Journal of Animal Science, 48(6), 1501–1508. https://doi.org/10.2527/jas1979.4861501x
Benchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A., & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1–4), 209–228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
Benchaar, C., Duynisveld, J. L., & Charmley, E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Canadian Journal of Animal Science, 86(1), 91–96. https://doi.org/https://doi.org/10.4141/A05-027
Blanch, M., Carro, M. D., Ranilla, M. J., Viso, A., Vázquez-Añón, M., & Bach, A. (2016). Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Animal Feed Science and Technology, 219, 313–323. https://doi.org/10.1016/j.anifeedsci.2016.07.002
Broderick, G. A., & Kang, J. H. (1980). Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. Journal of Dairy Science, 63(1), 64–75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
Bürger, P. J., Pereira, J. C., Queiroz, A. C. de, Coelho da Silva, J. F., Valadares Filho, S. de C., Cecon, P. R., & Casali, A. D. P. (2000). Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Revista Brasileira de Zootecnia, 29(1), 236–242. https://doi.org/10.1590/S1516-35982000000100031
Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580–2595. https://doi.org/10.3168/jds.2006-644
Casali, A. O., Detmann, E., Valadares Filho, S. D. C., Pereira, J. C., Henriques, L. T., Freitas, S. G. de, & Paulino, M. F. (2008). Influência do tempo de incubação e do tamanho de partículas sobre os teores de compostos indigestíveis em alimentos e fezes bovinas obtidos por procedimentos in situ. Revista Brasileira de Zootecnia, 37(2), 335–342. https://doi.org/10.1590/S1516-35982008000200021
Chen, X. B., Gomes, M. J. (1992). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivates – an overview of technical details. International Feed Research Unit. Rowett Research Institute. Aberdeen, UK. (Occasional publication). 21 p.
Chenard, M. G. (2021). Validação do glicosímetro portátil na dosagem da glicemia de pequenos ruminantes normoglicêmicos e induzidos a hipoglicemia e hiperglicemia. Dissertação (Mestrado em Medicina Veterinária) – Universidade Federal Fluminense, Niterói. 79 p.
Chibisa, G. E., Beauchemin, K. A., Koenig, K. M., & Penner, G. B. (2020). Optimum roughage proportion in barley-based feedlot cattle diets: total tract nutrient digestibility, rumination, ruminal acidosis, short-chain fatty absorption, and gastrointestinal tract barrier function. Journal of Animal Science, 98(6). https://doi.org/10.1093/jas/skaa160
Cobellis, G., Trabalza-Marinucci, M., & Yu, Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment, 545–546, 556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103
Coe, M. L., Nagaraja, T. G., Sun, Y. D., Wallace, N., Towne, E. G., Kemp, K. E., & Hutcheson, J. P. (1999). Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. Journal of Animal Science, 77(8), 2259. https://doi.org/10.2527/1999.7782259x
Danscher, A. M., Li, S., Andersen, P. H., Khafipour, E., Kristensen, N. B., & Plaizier, J. C. (2015). Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Veterinaria Scandinavica, 57(1), 39. https://doi.org/10.1186/s13028-015-0128-9
Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira, M. M., Azevedo, A. G. A. (2012). Métodos para análise de alimentos. Suprema, Visconde do Rio Branco, Brasil. 214 p.
Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172(1–2), 22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
Dong, H., Wang, S., Jia, Y., Ni, Y., Zhang, Y., Zhuang, S., Shen, X., & Zhao, R. (2013). Long-term effects of Subacute Ruminal Acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PLoS ONE, 8(12), e82850. https://doi.org/10.1371/journal.pone.0082850
Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583–4592. https://doi.org/10.2527/jas.2011-5018
Foote, A. P., Hales, K. E., Tait, R. G., Berry, E. D., Lents, C. A., Wells, J. E., Lindholm-Perry, A. K., & Freetly, H. C. (2016). Relationship of glucocorticoids and hematological measures with feed intake, growth, and efficiency of finishing beef cattle1. Journal of Animal Science, 94(1), 275–283. https://doi.org/10.2527/jas.2015-9407
Fujihara, T., Ørskov, E. R., Reeds, P. J., & Kyle, D. J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. The Journal of Agricultural Science, 109(1), 7–12. https://doi.org/10.1017/S0021859600080916
Gholib, G., Heistermann, M., Agil, M., Supriatna, I., Purwantara, B., Nugraha, T. P., & Engelhardt, A. (2018). Comparison of fecal preservation and extraction methods for steroid hormone metabolite analysis in wild crested macaques. Primates, 59(3), 281–292. https://doi.org/10.1007/s10329-018-0653-z
Gholib, G., Wahyuni, S., Wahyudi, A., Silalahi, K. S., Akmal, M., Sabri, M., & Nugraha, T. P. (2020). Validation of commercial ELISA kit for non-invasive measurement of cortisol concentrations and the evaluation of the sampling time of blood and fecal sample in aceh cattle. E3S Web of Conferences, 151, 01007. https://doi.org/10.1051/e3sconf/202015101007
Gholipour, A., Foroozandeh Shahraki, A. D., Tabeidian, S. A., Nasrollahi, S. M., & Yang, W. Z. (2016). The effects of increasing garlic powder and monensin supplementation on feed intake, nutrient digestibility, growth performance and blood parameters of growing calves. Journal of Animal Physiology and Animal Nutrition, 100(4), 623–628. https://doi.org/10.1111/jpn.12402
Gonzáles, F. H. D. (2000). Uso do perfil metabólico no diagnóstico de doenças metabólicas-nutricionais em ruminantes. p.89-106. In: Gonzáles, F. H. D., Barcellos, J. O., Ospina, H., Ribeiro, L. A. O. Perfil metabólico em ruminantes: seu uso em nutrição e doenças nutricionais. Gráfica da Universidade Federal do Rio Grande do Sul. Porto Alegre. 108 p.
Goodrich, R. D., Garrett, J. E., Gast, D. R., Kirick, M. A., Larson, D. A., & Meiske, J. C. (1984). Influence of monensin on the performance of cattle. Journal of Animal Science, 58(6), 1484–1498. https://doi.org/10.2527/jas1984.5861484x
Gressley, T. F., Hall, M. B., & Armentano, L. E. (2011). Ruminant nutrition symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants. Journal of Animal Science, 89(4), 1120–1130. https://doi.org/10.2527/jas.2010-3460
Heker Junior, J. C., Neumann, M., Ueno, R. K., Falbo, M. K., Galbeiro, S., De Souza, A. M., Venancio, B. J., Santos, L. C., & Askel, E. J. (2018). Effect of monensin sodium associative to virginiamycin and/or essential oils on the performance of feedlot finished steers. Semina:Ciencias Agrarias, 39(1), 261–274. https://doi.org/10.5433/1679-0359.2018v39n1p261
Jayanegara, A., Ridla, M., Nahrowi, & Laconi, E. B. (2019). Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conference Series: Materials Science and Engineering, 546(4), 042016. https://doi.org/10.1088/1757-899X/546/4/042016
Khiaosa-Ard, R., & Zebeli, Q. (2013). Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. Journal of Animal Science, 91(4), 1819–1830. https://doi.org/10.2527/jas.2012-5691
Koenig, K. M., & Beauchemin, K. A. (2018). Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. Journal of Animal Science, 96(10), 4398–4413. https://doi.org/10.1093/jas/sky273
Kononoff, P. J., Heinrichs, A. J., & Buckmaster, D. R. (2003). Modification of the Penn State Forage and total mixed ration particle separator and the effects of moisture content on its measurements. Journal of Dairy Science, 86(5), 1858–1863. https://doi.org/10.3168/jds.S0022-0302(03)73773-4
Lamag, A., Moraes, K. A. K., Araújo, C. V., Souza, H. A., Sousa, J. N., Filho, A. P., Moreno, L. F., Santos, K. R., da Cunha, L. O., & Moraes, E. H. B. K. (2021). Monensin associated or not with virginiamycin or functional oil for feedlot beef cattle. Tropical Animal Health and Production, 53(5), 506. https://doi.org/10.1007/s11250-021-02940-8
Lammers, B. P., Buckmaster, D. R., & Heinrichs, A. J. (1996). A simple method for the analysis of particle sizes of forage and total mixed rations. Journal of Dairy Science, 79(5), 922–928. https://doi.org/10.3168/jds.S0022-0302(96)76442-1
Macheboeuf, D., Morgavi, D. P., Papon, Y., Mousset, J. L., & Arturo-Schaan, M. (2008). Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology, 145(1–4), 335–350. https://doi.org/10.1016/j.anifeedsci.2007.05.044
McIntosh, F. M., Williams, P., Losa, R., Wallace, R. J., Beever, D. A., & Newbold, C. J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied and Environmental Microbiology, 69(8), 5011–5014. https://doi.org/10.1128/AEM.69.8.5011-5014.2003
Muir, L. A., Rickes, E. L., Duquette, P. F., & Smith, G. E. (1981). Prevention of induced lactic acidosis in cattle by thiopeptin. Journal of Animal Science, 52(3), 635–643. https://doi.org/10.2527/jas1981.523635x
Nagaraja, T. G., & Lechtenberg, K. F. (2007). Acidosis in Feedlot Cattle. Veterinary Clinics of North America - Food Animal Practice, 23(2), 333–350. https://doi.org/10.1016/j.cvfa.2007.04.002
Nagaraja, T. G., & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. Journal of Dairy Science, 90(S), E17–E38. https://doi.org/10.3168/jds.2006-478
National Academies of Science, Engineering, and Medicine - NASEM. (2016). Nutrient requirements of beef cattle: Eighth revised edition. The National Academies Press. Washington, DC. 494 p. https://doi.org/10.17226/19014
Nocek, J. E., & Kohn, R. A. (1988). In situ particle size reduction of alfalfa and timothy hay as influenced by form and particle size. Journal of Dairy Science, 71(4), 932–945. https://doi.org/10.3168/jds.S0022-0302(88)79639-3
Oetzel, G. R. (2000). Clinical aspects of ruminal acidosis in dairy cattle. American Association of Bovine Practitioners Conference Proceedings, 46–53. https://doi.org/10.21423/aabppro20005359
Ogunade, I., Schweickart, H., Andries, K., Lay, J., & Adeyemi, J. (2018). Monensin alters the functional and metabolomic profile of rumen microbiota in beef cattle. Animals, 8(11), 211. https://doi.org/10.3390/ani8110211
Patra, A. K. (2011). Effects of essential oils on Rumen fermentation, microbial ecology and Ruminant production. Asian Journal of Animal and Veterinary Advances, 6(5), 416–428. https://doi.org/10.3923/ajava.2011.416.428
Pell, A. N., & Schofield, P. (1993). Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science, 76(4), 1063–1073. https://doi.org/10.3168/jds.S0022-0302(93)77435-4
Rémond, D., Cabrera-Estrada, J. I., Champion, M., Chauveau, B., Coudure, R., & Poncet, C. (2004). Effect of corn particle size on site and extent of starch digestion in lactating dairy cows. Journal of Dairy Science, 87(5), 1389–1399. https://doi.org/10.3168/jds.S0022-0302(04)73288-9
Renesto, D. M., Hoffmann, A., Araújo, T. L. R., Delevatti, L. M., Leite, R. G., Ribeiro, J. L., Romanzini, E. P., Barbero, R. P., & Reis, R. A. (2021). Supplement levels and functional oils to replace virginiamycin for young bulls during early dry season on grasslands and finishing phase in feedlot systems. Spanish Journal of Agricultural Research, 19(3), e0609. https://doi.org/10.5424/sjar/2021193-15795
Schwaiger, T., Beauchemin, K. A., & Penner, G. B. (2013). Duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of Ruminal acidosis: Short-chain fatty acid and lactate absorption, saliva production, and blood metabolites. Journal of Animal Science, 91(12), 5743–5753. https://doi.org/10.2527/jas.2013-6472
Silva, A. O. S., Zotti, C. A., Carvalho, R. F., Corte, R. R., Cônsolo, N. R. B., Silva, S. L., Leme, P. R. (2018). Effect of replacing antibiotics with functional oils following an abrupt transition to high-concentrate diets on performance and carcass traits of Nellore catlle. Animal Feed Science and Technology, 247, 53-62. https://doi.org/10.1016/j.anifeedsci.2018.10.015
Silva, B. de C., Godoi, L. A., Valadares Filho, S. de C., Zanetti, D., Benedeti, P. D. B., & Detmann, E. (2019). A suitable enzymatic method for starch quantification in different organic matrices. MethodsX, 6, 2322–2328. https://doi.org/10.1016/j.mex.2019.09.040
Silva, L. F. C. e, Valadares Filho, S. de C., Chizzotti, M. L., Rotta, P. P., Prados, L. F., Valadares, R. F. D., Zanetti, D., & Braga, J. M. da S. (2012). Creatinine excretion and relationship with body weight of Nellore cattle. Revista Brasileira de Zootecnia, 41(3), 807–810. https://doi.org/10.1590/S1516-35982012000300046
Silva, R. M. N. da, Valadares, R. F. D., Valadares Filho, S. de C., Cecon, P. R., Rennó, L. N., & Silva, J. M. da. (2001). Uréia para Vacas em Lactação: 2. Estimativas do Volume Urinário, da Produção Microbiana e da Excreção de Uréia. Revista Brasileira de Zootecnia, 30(6), 1948–1957. https://doi.org/10.1590/S1516-35982001000700035
Silvestre, A. M., & Millen, D. D. (2021). The 2019 Brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Revista Brasileira de Zootecnia, 50, 1–25. https://doi.org/10.37496/RBZ5020200189
Steele, M. A., Croom, J., Kahler, M., Alzahal, O., Hook, S. E., Plaizier, K., & Mcbride, B. W. (2011). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 300(6), 1515–1523. https://doi.org/10.1152/ajpregu.00120.2010
Uribarri, J., Oh, M. S., & Carroll, H. J. (1998). D-lactic acidosis: A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine, 77(2), 73–82. https://doi.org/10.1097/00005792-199803000-00001
Valadares, R. F. D., Broderick, G. A., Valadares Filho, S. C., & Clayton, M. K. (1999). Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science, 82(12), 2686–2696. https://doi.org/10.3168/jds.S0022-0302(99)75525-6
Valente, T. N. P., Detmann, E., Valadares Filho, S. de C., Cunha, M. da, Queiroz, A. C. de, & Sampaio, C. B. (2011). In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Revista Brasileira de Zootecnia, 40(3), 666–675. https://doi.org/10.1590/S1516-35982011000300027
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wanapat, M., Kang, S., Khejornsart, P., & Wanapat, S. (2013). Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle. Asian-Australasian Journal of Animal Sciences, 26(8), 1127–1136. https://doi.org/10.5713/ajas.2013.13013
Yang, W. Z., Ametaj, B. N., Benchaar, C., & Beauchemin, K. A. (2010). Dose response to cinnamaldehyde supplementation in growing beef heifers: Ruminal and intestinal digestion. Journal of Animal Science, 88(2), 680–688. https://doi.org/10.2527/jas.2008-1652
Zinn, R. A. (1990). Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. Journal of Animal Science, 68(3), 767. https://doi.org/10.2527/1990.683767x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alessandra Schaphauser Rosseto Fonseca, Lucas Gimenes Mota , Ana Claudia da Costa, Thiago Sérgio de Andrade, Matheus Lima da Costa Abreu, Matheus Scheffer Dal Pont, Luciano da Silva Cabral, Rosemary Lais Galati
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.