Identification and mapping of workplace accident hotspots in Brazil using machine learning and spatial analysis techniques

Identification and mapping of workplace accident hotspots in Brazil using machine learning and spatial analysis techniques

Authors

DOI:

https://doi.org/10.58951/dataset.2024.027

Keywords:

Accident hotspots, Machine learning, Spatial analysis, Occupational safety, Clustering

Abstract

This study aims to identify and analyze workplace accident hotspots in Brazil, focusing on critical sectors such as construction, road transportation, mining, and electric energy. The adopted methodology involves applying machine learning algorithms, specifically K-means, DBSCAN, HDBSCAN, and Agglomerative Clustering, for clustering accident data provided by INSS. Additionally, spatial analysis techniques were used with GIS tools to map and visualize areas with the highest incidence of accidents. The results revealed that most accidents are concentrated in metropolitan regions, particularly in the Southeast and South of Brazil. The clustering algorithms identified risk patterns across different sectors, highlighting inadequate training and the non-use of personal protective equipment (PPE) as critical factors. Spatial analysis provided a clear visualization of hotspots, offering insights into the formulation of more effective and targeted safety policies. It is concluded that combining machine learning techniques with spatial analysis is a powerful approach for identifying workplace accident hotspots, significantly contributing to risk reduction and the promotion of safer work environments. The study opens possibilities for future research that integrates socioeconomic and cultural variables into workplace accident analysis.

References

Abdullah, K. H., & Sofyan, D. (2023). Machine learning in safety and health research: a scientometric analysis. International Journal of Information Science and Management, 21(1). https://doi.org/https://doi.org/10.22034/ijism.2022.1977763.0

Ackermann, M. R., Blömer, J., Kuntze, D., & Sohler, C. (2014). Analysis of Agglomerative Clustering. Algorithmica, 69(1), 184–215. https://doi.org/10.1007/s00453-012-9717-4

Akalonu, G., Nwaogazie, I., & Ugwoha, E. (2017). Evaluation of workplace safety culture implementation and practice using agglomerative hierarchy clustering. Archives of Current Research International, 10(2), 1–15. https://doi.org/10.9734/ACRI/2017/36464

Akay, A. O., Akgul, M., Esin, A. İ., Demir, M., Şenturk, N., & Özturk, T. (2021). Evaluation of occupational accidents in forestry in Europe and Turkey by k-means clustering analysis. Turkish Journal of Agriculture and Forestry, 45(4), 495–509. https://doi.org/10.3906/tar-2010-55

Babalola, A., Manu, P., Cheung, C., Yunusa-Kaltungo, A., & Bartolo, P. (2023). Applications of immersive technologies for occupational safety and health training and education: A systematic review. Safety Science, 166, 106214. https://doi.org/10.1016/j.ssci.2023.106214

Carvalho, C. A. da S., Silva, J. C. da, Lima, J. L. L. P. C. de, & Brum, S. da S. (2020). Saúde e Segurança no Trabalho: um relato dos números de acidentes do trabalho e doenças ocupacionais no Brasil (2012-2018) / Health and Safety at Work: a portrait of occupational accident and disease numbers in Brazil (2012-2018). Brazilian Journal of Business, 2(3), 2909–2926. https://doi.org/10.34140/bjbv2n3-070

Cunha, H. D., Silva , A. D. da, Martins, B. B., Guedes, B. S., Nunes, I. M., Maranhão, M. R. de A., & Conforto, M. do N. F. (2024). Detection of slums in Rio de Janeiro through satellite images. Dataset Reports, 3(1), 107–113. https://doi.org/10.58951/dataset.2024.019

Deng, D. (2020). DBSCAN Clustering Algorithm Based on Density. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 949–953. https://doi.org/10.1109/IFEEA51475.2020.00199

Deng, F., Gu, W., Zeng, W., Zhang, Z., & Wang, F. (2020). Hazardous Chemical Accident Prevention Based on K-Means Clustering Analysis of Incident Information. IEEE Access, 8, 180171–180183. https://doi.org/10.1109/ACCESS.2020.3028235

Filgueiras, V. A. (2017). Saúde e segurança do trabalho no Brasil. In V. A. Filgueiras (Ed.), Saúde e Segurança do Trabalho no Brasil. Gráfica Movimento. pp. 19–78.

Jaafar, M. H., Arifin, K., Aiyub, K., Razman, M. R., Ishak, M. I. S., & Samsurijan, M. S. (2018). Occupational safety and health management in the construction industry: a review. International Journal of Occupational Safety and Ergonomics, 24(4), 493–506. https://doi.org/10.1080/10803548.2017.1366129

Jozan, M. M. B., Ghorbani, B. D., Khalid, M. S., Lotfata, A., & Tabesh, H. (2023). Impact assessment of e-trainings in occupational safety and health: a literature review. BMC Public Health, 23(1), 1187. https://doi.org/10.1186/s12889-023-16114-8

Kemajl, Z., Stojance, M., Gzim, I., & Ledi, M. L. (2024). Comprehensive analysis of the mining accident forecasting and risk assessment methodologies: Case study – Stanterg Mine. Mining of Mineral Deposits, 18(2), 11–17. https://doi.org/10.33271/mining18.02.011

Konzen, I. G. do N. C., Souto, A. B., Konzen, M. R., & Neto, J. M. da S. (2023). Segurança no trabalho: motivos que levam o trabalhador da construção civil a deixar de utilizar do EPIs. Revista de Gestão e Secretariado (Management and Administrative Professional Review), 14(6), 8875–8896. https://doi.org/10.7769/gesec.v14i6.2271

Liang, C.-J., & Cheng, M. H. (2023). Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review. International Journal of Environmental Research and Public Health, 20(10), 5904. https://doi.org/10.3390/ijerph20105904

Lima, M. D. F. de, Silva, M. C., França, C. D. V., Santos, W. B. dos, Costa, V. A., Costa, W. L. M. da, Segundo, J. de J. P., & Teixeira, M. R. (2023). Análise sobre a segurança do trabalho em empreendimentos de construção civil: uma revisão sistemática em diferentes categorias de canteiros de obras. Contribuciones a Las Ciencias Sociales, 16(9), 18314–18328. https://doi.org/10.55905/revconv.16n.9-266

Mendes, J. M. R., & Wünsch, D. S. (2007). Elementos para uma nova cultura em segurança e saúde no trabalho. Revista Brasileira de Saúde Ocupacional, 32(115), 153–163. https://doi.org/10.1590/S0303-76572007000100014

Mendonça, M. F. S. de, Silva, A. P. de S. C., & Castro, C. C. L. de. (2017). Análise espacial dos acidentes de trânsito urbano atendidos pelo Serviço de Atendimento Móvel de Urgência: um recorte no espaço e no tempo. Revista Brasileira de Epidemiologia, 20(4), 727–741. https://doi.org/10.1590/1980-5497201700040014

Menezes, M. N., & Dal Magro, M. L. P. (2023). Impactos psicossociais dos acidentes de trabalho graves: um olhar sobre os trabalhadores acompanhados pelo Centro de Referência em Saúde do Trabalhador. Revista Jurídica Trabalho e Desenvolvimento Humano, 6, 1–30. https://doi.org/https://doi.org/10.33239/rjtdh.v6.152

Ministério da Previdência Social. (2024). Anuário Estatístico de Acidentes do Trabalho – AEAT. Dados Estatísticos – Saúde e Segurança do Trabalhador. Acesso em 17 de outubro de 2024. Disponível em: <https://www.gov.br/previdencia/pt-br/assuntos/previdencia-social/saude-e-seguranca-do-trabalhador/acidente_trabalho_incapacidade>.

Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-means and alternative clustering methods in modern power systems. IEEE Access, 11, 119596–119633. https://doi.org/10.1109/ACCESS.2023.3327640

Mutlu, N. G., Altuntas, S., & Dereli, T. (2023). The evaluation of occupational accident with sequential pattern mining. Safety Science, 166, 106212. https://doi.org/10.1016/j.ssci.2023.106212

Oliveira, O. J. de, Oliveira, A. B. de, & Almeida, R. A. de. (2010). Gestão da segurança e saúde no trabalho em empresas produtoras de baterias automotivas: um estudo para identificar boas práticas. Production, 20(3), 481–490. https://doi.org/10.1590/S0103-65132010005000029

Peinado, H. S. (2019). Segurança e Saúde do Trabalho na Indústria da Construção Civil. Editora Scienza. https://doi.org/10.26626/978-85-5953-048-3.2019B0001

Queiroz, M. T. A., Queiroz, F. A., & Queiroz, V. A. (2023). Ocorrência de acidentes de trabalho na Região do Vale do Aço, MG, Brasil. Sistemas & Gestão, 18(1). http://dx.doi.org/10.20985/1980-5160.2023.v18n1.1855

Rosa, R. (2011). Análise espacial em geografia. Revista da ANPEGE, 07(01), 275–289. https://doi.org/10.5418/RA2011.0701.0023

Schwambach, G. C. dos S., Sott , M. K., & Schwambach, R. E. (2024). Wearable devices and workplace productivity: a bibliometric analysis of their integration into professional environments. Dataset Reports, 3(1), 101–106. https://doi.org/10.58951/dataset.2024.018

Silva, D. da, Lopes, E. L., & Braga Junior, S. S. (2014). Pesquisa quantitativa: elementos, paradigmas e definições. Revista de Gestão e Secretariado, 5(1), 01–18. https://doi.org/10.7769/gesec.v5i1.297

Simonelli, A. P., Jackson Filho, J. M., Vilela, R. A. G., & Almeida, I. M. de. (2016). Influência da segurança comportamental nas práticas e modelos de prevenção de acidentes do trabalho: revisão sistemática da literatura. Saúde e Sociedade, 25(2), 463–478. https://doi.org/10.1590/S0104-12902016147495

Soares, D. de C. (2019). Análise espacial exploratória dos acidentes de trabalho no Brasil. Boletim Científico Escola Superior do Ministério Público da União, 53, 205–232. https://escola.mpu.mp.br/publicacoescientificas/index.php/boletim/article/view/507

Sousa, A. do R. F. de, & Rodolpho, D. (2020). Importância da segurança do trabalho na produção industrial. Revista Interface Tecnológica, 17(2), 817–824. https://doi.org/10.31510/infa.v17i2.1008

Souza, D. F. de, Martins, W. A., Martinho, E., & Santos, S. R. (2023). An analysis of accidents of electrical origin in Brazil between 2016 and 2021. IEEE Transactions on Industry Applications, 59(3), 3151–3160. https://doi.org/10.1109/TIA.2023.3241138

Stewart , G., & Al-Khassaweneh, M. (2022). An implementation of the HDBSCAN* clustering algorithm. Applied Sciences, 12(5), 2405. https://doi.org/10.3390/app12052405

Tokuda, E. K., Comin, C. H., & Costa, L. da F. (2022). Revisiting agglomerative clustering. Physica A: Statistical Mechanics and its Applications, 585, 126433. https://doi.org/10.1016/j.physa.2021.126433

Vitrano, G., Micheli, G. J. L., Guglielmi, A., De Merich, D., Pellicci, M., Urso, D., & Ipsen, C. (2023). Sustainable occupational safety and health interventions: A study on the factors for an effective design. Safety Science, 166, 106249. https://doi.org/10.1016/j.ssci.2023.106249

Published

2024-10-17

How to Cite

Gonçalves, R. H. de S., & Santos, W. M. dos. (2024). Identification and mapping of workplace accident hotspots in Brazil using machine learning and spatial analysis techniques. Dataset Reports, 3(1), 141–148. https://doi.org/10.58951/dataset.2024.027

Issue

Section

Research Article
Loading...