Identification and mapping of workplace accident hotspots in Brazil using machine learning and spatial analysis techniques
DOI:
https://doi.org/10.58951/dataset.2024.027Keywords:
Accident hotspots, Machine learning, Spatial analysis, Occupational safety, ClusteringAbstract
This study aims to identify and analyze workplace accident hotspots in Brazil, focusing on critical sectors such as construction, road transportation, mining, and electric energy. The adopted methodology involves applying machine learning algorithms, specifically K-means, DBSCAN, HDBSCAN, and Agglomerative Clustering, for clustering accident data provided by INSS. Additionally, spatial analysis techniques were used with GIS tools to map and visualize areas with the highest incidence of accidents. The results revealed that most accidents are concentrated in metropolitan regions, particularly in the Southeast and South of Brazil. The clustering algorithms identified risk patterns across different sectors, highlighting inadequate training and the non-use of personal protective equipment (PPE) as critical factors. Spatial analysis provided a clear visualization of hotspots, offering insights into the formulation of more effective and targeted safety policies. It is concluded that combining machine learning techniques with spatial analysis is a powerful approach for identifying workplace accident hotspots, significantly contributing to risk reduction and the promotion of safer work environments. The study opens possibilities for future research that integrates socioeconomic and cultural variables into workplace accident analysis.
References
Abdullah, K. H., & Sofyan, D. (2023). Machine learning in safety and health research: a scientometric analysis. International Journal of Information Science and Management, 21(1). https://doi.org/https://doi.org/10.22034/ijism.2022.1977763.0
Ackermann, M. R., Blömer, J., Kuntze, D., & Sohler, C. (2014). Analysis of Agglomerative Clustering. Algorithmica, 69(1), 184–215. https://doi.org/10.1007/s00453-012-9717-4
Akalonu, G., Nwaogazie, I., & Ugwoha, E. (2017). Evaluation of workplace safety culture implementation and practice using agglomerative hierarchy clustering. Archives of Current Research International, 10(2), 1–15. https://doi.org/10.9734/ACRI/2017/36464
Akay, A. O., Akgul, M., Esin, A. İ., Demir, M., Şenturk, N., & Özturk, T. (2021). Evaluation of occupational accidents in forestry in Europe and Turkey by k-means clustering analysis. Turkish Journal of Agriculture and Forestry, 45(4), 495–509. https://doi.org/10.3906/tar-2010-55
Babalola, A., Manu, P., Cheung, C., Yunusa-Kaltungo, A., & Bartolo, P. (2023). Applications of immersive technologies for occupational safety and health training and education: A systematic review. Safety Science, 166, 106214. https://doi.org/10.1016/j.ssci.2023.106214
Carvalho, C. A. da S., Silva, J. C. da, Lima, J. L. L. P. C. de, & Brum, S. da S. (2020). Saúde e Segurança no Trabalho: um relato dos números de acidentes do trabalho e doenças ocupacionais no Brasil (2012-2018) / Health and Safety at Work: a portrait of occupational accident and disease numbers in Brazil (2012-2018). Brazilian Journal of Business, 2(3), 2909–2926. https://doi.org/10.34140/bjbv2n3-070
Cunha, H. D., Silva , A. D. da, Martins, B. B., Guedes, B. S., Nunes, I. M., Maranhão, M. R. de A., & Conforto, M. do N. F. (2024). Detection of slums in Rio de Janeiro through satellite images. Dataset Reports, 3(1), 107–113. https://doi.org/10.58951/dataset.2024.019
Deng, D. (2020). DBSCAN Clustering Algorithm Based on Density. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 949–953. https://doi.org/10.1109/IFEEA51475.2020.00199
Deng, F., Gu, W., Zeng, W., Zhang, Z., & Wang, F. (2020). Hazardous Chemical Accident Prevention Based on K-Means Clustering Analysis of Incident Information. IEEE Access, 8, 180171–180183. https://doi.org/10.1109/ACCESS.2020.3028235
Filgueiras, V. A. (2017). Saúde e segurança do trabalho no Brasil. In V. A. Filgueiras (Ed.), Saúde e Segurança do Trabalho no Brasil. Gráfica Movimento. pp. 19–78.
Jaafar, M. H., Arifin, K., Aiyub, K., Razman, M. R., Ishak, M. I. S., & Samsurijan, M. S. (2018). Occupational safety and health management in the construction industry: a review. International Journal of Occupational Safety and Ergonomics, 24(4), 493–506. https://doi.org/10.1080/10803548.2017.1366129
Jozan, M. M. B., Ghorbani, B. D., Khalid, M. S., Lotfata, A., & Tabesh, H. (2023). Impact assessment of e-trainings in occupational safety and health: a literature review. BMC Public Health, 23(1), 1187. https://doi.org/10.1186/s12889-023-16114-8
Kemajl, Z., Stojance, M., Gzim, I., & Ledi, M. L. (2024). Comprehensive analysis of the mining accident forecasting and risk assessment methodologies: Case study – Stanterg Mine. Mining of Mineral Deposits, 18(2), 11–17. https://doi.org/10.33271/mining18.02.011
Konzen, I. G. do N. C., Souto, A. B., Konzen, M. R., & Neto, J. M. da S. (2023). Segurança no trabalho: motivos que levam o trabalhador da construção civil a deixar de utilizar do EPIs. Revista de Gestão e Secretariado (Management and Administrative Professional Review), 14(6), 8875–8896. https://doi.org/10.7769/gesec.v14i6.2271
Liang, C.-J., & Cheng, M. H. (2023). Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review. International Journal of Environmental Research and Public Health, 20(10), 5904. https://doi.org/10.3390/ijerph20105904
Lima, M. D. F. de, Silva, M. C., França, C. D. V., Santos, W. B. dos, Costa, V. A., Costa, W. L. M. da, Segundo, J. de J. P., & Teixeira, M. R. (2023). Análise sobre a segurança do trabalho em empreendimentos de construção civil: uma revisão sistemática em diferentes categorias de canteiros de obras. Contribuciones a Las Ciencias Sociales, 16(9), 18314–18328. https://doi.org/10.55905/revconv.16n.9-266
Mendes, J. M. R., & Wünsch, D. S. (2007). Elementos para uma nova cultura em segurança e saúde no trabalho. Revista Brasileira de Saúde Ocupacional, 32(115), 153–163. https://doi.org/10.1590/S0303-76572007000100014
Mendonça, M. F. S. de, Silva, A. P. de S. C., & Castro, C. C. L. de. (2017). Análise espacial dos acidentes de trânsito urbano atendidos pelo Serviço de Atendimento Móvel de Urgência: um recorte no espaço e no tempo. Revista Brasileira de Epidemiologia, 20(4), 727–741. https://doi.org/10.1590/1980-5497201700040014
Menezes, M. N., & Dal Magro, M. L. P. (2023). Impactos psicossociais dos acidentes de trabalho graves: um olhar sobre os trabalhadores acompanhados pelo Centro de Referência em Saúde do Trabalhador. Revista Jurídica Trabalho e Desenvolvimento Humano, 6, 1–30. https://doi.org/https://doi.org/10.33239/rjtdh.v6.152
Ministério da Previdência Social. (2024). Anuário Estatístico de Acidentes do Trabalho – AEAT. Dados Estatísticos – Saúde e Segurança do Trabalhador. Acesso em 17 de outubro de 2024. Disponível em: <https://www.gov.br/previdencia/pt-br/assuntos/previdencia-social/saude-e-seguranca-do-trabalhador/acidente_trabalho_incapacidade>.
Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-means and alternative clustering methods in modern power systems. IEEE Access, 11, 119596–119633. https://doi.org/10.1109/ACCESS.2023.3327640
Mutlu, N. G., Altuntas, S., & Dereli, T. (2023). The evaluation of occupational accident with sequential pattern mining. Safety Science, 166, 106212. https://doi.org/10.1016/j.ssci.2023.106212
Oliveira, O. J. de, Oliveira, A. B. de, & Almeida, R. A. de. (2010). Gestão da segurança e saúde no trabalho em empresas produtoras de baterias automotivas: um estudo para identificar boas práticas. Production, 20(3), 481–490. https://doi.org/10.1590/S0103-65132010005000029
Peinado, H. S. (2019). Segurança e Saúde do Trabalho na Indústria da Construção Civil. Editora Scienza. https://doi.org/10.26626/978-85-5953-048-3.2019B0001
Queiroz, M. T. A., Queiroz, F. A., & Queiroz, V. A. (2023). Ocorrência de acidentes de trabalho na Região do Vale do Aço, MG, Brasil. Sistemas & Gestão, 18(1). http://dx.doi.org/10.20985/1980-5160.2023.v18n1.1855
Rosa, R. (2011). Análise espacial em geografia. Revista da ANPEGE, 07(01), 275–289. https://doi.org/10.5418/RA2011.0701.0023
Schwambach, G. C. dos S., Sott , M. K., & Schwambach, R. E. (2024). Wearable devices and workplace productivity: a bibliometric analysis of their integration into professional environments. Dataset Reports, 3(1), 101–106. https://doi.org/10.58951/dataset.2024.018
Silva, D. da, Lopes, E. L., & Braga Junior, S. S. (2014). Pesquisa quantitativa: elementos, paradigmas e definições. Revista de Gestão e Secretariado, 5(1), 01–18. https://doi.org/10.7769/gesec.v5i1.297
Simonelli, A. P., Jackson Filho, J. M., Vilela, R. A. G., & Almeida, I. M. de. (2016). Influência da segurança comportamental nas práticas e modelos de prevenção de acidentes do trabalho: revisão sistemática da literatura. Saúde e Sociedade, 25(2), 463–478. https://doi.org/10.1590/S0104-12902016147495
Soares, D. de C. (2019). Análise espacial exploratória dos acidentes de trabalho no Brasil. Boletim Científico Escola Superior do Ministério Público da União, 53, 205–232. https://escola.mpu.mp.br/publicacoescientificas/index.php/boletim/article/view/507
Sousa, A. do R. F. de, & Rodolpho, D. (2020). Importância da segurança do trabalho na produção industrial. Revista Interface Tecnológica, 17(2), 817–824. https://doi.org/10.31510/infa.v17i2.1008
Souza, D. F. de, Martins, W. A., Martinho, E., & Santos, S. R. (2023). An analysis of accidents of electrical origin in Brazil between 2016 and 2021. IEEE Transactions on Industry Applications, 59(3), 3151–3160. https://doi.org/10.1109/TIA.2023.3241138
Stewart , G., & Al-Khassaweneh, M. (2022). An implementation of the HDBSCAN* clustering algorithm. Applied Sciences, 12(5), 2405. https://doi.org/10.3390/app12052405
Tokuda, E. K., Comin, C. H., & Costa, L. da F. (2022). Revisiting agglomerative clustering. Physica A: Statistical Mechanics and its Applications, 585, 126433. https://doi.org/10.1016/j.physa.2021.126433
Vitrano, G., Micheli, G. J. L., Guglielmi, A., De Merich, D., Pellicci, M., Urso, D., & Ipsen, C. (2023). Sustainable occupational safety and health interventions: A study on the factors for an effective design. Safety Science, 166, 106249. https://doi.org/10.1016/j.ssci.2023.106249
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Raphael Hendrigo de Souza Gonçalves, Wendel Marcos dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.