Utilização de resíduos orgânicos para a produção de adsorventes

Utilização de resíduos orgânicos para a produção de adsorventes





Meio ambiente, contaminantes, casca de arroz, casca de camarão


A produção agroindustrial gera uma grande quantidade de resíduos que frequentemente são descartados de maneira incorreta. Esses resíduos podem ser reutilizados como biomassa para a produção de adsorventes na remoção de contaminantes ambientais. A técnica de adsorção ganhou destaque, sendo um método eficiente para tratar efluentes e água, sendo a escolha do adsorvente de suma importância. O carvão ativado (CA) é reconhecido como um adsorvente superior e amplamente aplicado na descontaminação de água e efluentes. Nesse contexto, a casca de camarão e a casca de arroz surgem como biomassa interessante para a produção de adsorventes. O objetivo desta pesquisa é apresentar estudos realizados utilizando resíduos agroindustriais na produção de adsorventes e seu uso na remoção de contaminantes ambientais em água contaminada. O método utilizado foi a revisão bibliográfica. Estudos corroboram que materiais adsorventes provenientes de resíduos agroindustriais são eficientes na remoção de corantes, medicamentos, metais, entre outros compostos contaminantes. Esses materiais, além de serem acessíveis financeiramente, são excelentes adsorventes disponíveis, com propriedades de adsorção comparáveis a materiais comerciais.


Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104–113. https://doi.org/10.1016/j.ijbiomac.2020.02.330

Boddu, S., Chandra, A., & Ali Khan, A. (2022). Biosorption of Cu(II), Pb(II) from electroplating industry effluents by treated shrimp shell. Materials Today: Proceedings, 57, 1520–1527. https://doi.org/10.1016/j.matpr.2021.12.052

Borja-Urzola, A. del C., García-Gómez, R. S., Bernal-González, M., & Durán-Domínguez-de-Bazúa, M. del C. (2021). Chitosan-calcite from shrimp residues: A low-cost adsorbent for three triazines removal from aqueous media. Materials Today Communications, 26, 102131. https://doi.org/10.1016/j.mtcomm.2021.102131

Changmai, M., Banerjee, P., Nahar, K., & Purkait, M. K. (2018). A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co (II) from aqueous solution: Kinetic and equilibrium studies. Journal of Environmental Chemical Engineering, 6(1), 246–257. https://doi.org/10.1016/j.jece.2017.12.009

Chen, Y., Wang, F., Duan, L., Yang, H., & Gao, J. (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222, 487–494. https://doi.org/10.1016/j.molliq.2016.07.090

Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., & Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547. https://doi.org/10.1016/j.jhazmat.2021.126547

Dai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q., Hu, G., Wang, L., & Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 198, 70–74. https://doi.org/10.1016/j.jenvman.2017.04.057

Dai, L., Zhu, W., He, L., Tan, F., Zhu, N., Zhou, Q., He, M., & Hu, G. (2018). Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresource Technology, 267, 510–516. https://doi.org/10.1016/j.biortech.2018.07.090

Das, S., & Mishra, S. (2020). Insight into the isotherm modelling, kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell. Materials Chemistry and Physics, 245, 122751. https://doi.org/10.1016/j.matchemphys.2020.122751

Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., & Ruiz, B. (2014). KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar-Agar industry. Fuel Processing Technology, 121, 25–31. https://doi.org/10.1016/j.fuproc.2013.12.017

Hamid, Y., Liu, L., Usman, M., Naidu, R., Haris, M., Lin, Q., Ulhassan, Z., Hussain, M. I., & Yang, X. (2022). Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. Journal of Hazardous Materials, 437, 129337. https://doi.org/10.1016/j.jhazmat.2022.129337

He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855. https://doi.org/10.1016/j.envpol.2019.05.151

Hidalgo-Ulloa, A., Buisman, C., & Weijma, J. (2022). Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor. Hydrometallurgy, 213, 105950. https://doi.org/10.1016/j.hydromet.2022.105950

Ji, C., Yang, S., Cheng, Y., Liu, L., Wang, D., Zhu, S., E, T., & Li, Y. (2023). In situ formed CaSO4 on waste dander biochar to inhibit the mineralization of soil organic carbon. Science of the Total Environment, 854, 158776. https://doi.org/10.1016/j.scitotenv.2022.158776

Jiang, X., Sun, P., Xu, L., Xue, Y., Zhang, H., & Zhu, W. (2020). Platanus orientalis leaves based hierarchical porous carbon microspheres as high efficiency adsorbents for organic dyes removal. Chinese Journal of Chemical Engineering, 28(1), 254–265. https://doi.org/10.1016/j.cjche.2019.03.030

Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120. https://doi.org/10.1016/j.egypro.2014.06.014

Karthi, S., Sangeetha, R. K., Arumugam, K., Karthika, T., & Vimala, S. (2022). Removal of methylene blue dye using shrimp shell chitin from industrial effluents. Materials Today: Proceedings, 66, 1945–1950. https://doi.org/10.1016/j.matpr.2022.05.428

Keshmiri-Naqab, R., & Taghavijeloudar, M. (2023). Could organoclay be used as a promising natural adsorbent for efficient and cost-effective dye wastewater treatment? Journal of Environmental Management, 342, 118322. https://doi.org/10.1016/j.jenvman.2023.118322

Kharrazi, S. M., Mirghaffari, N., Dastgerdi, M. M., & Soleimani, M. (2020). A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technology, 366, 358–368. https://doi.org/10.1016/j.powtec.2020.01.065

Kyzas, G. Z., Deliyanni, E. A., & Matis, K. A. (2016). Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490, 74–83. https://doi.org/10.1016/j.colsurfa.2015.11.038

Lei, Y., Guo, X., Jiang, M., Sun, W., He, H., Chen, Y., Thummavichai, K., Ola, O., Zhu, Y., & Wang, N. (2022). Co-ZIF reinforced cow manure biochar (CMB) as an effective peroxymonosulfate activator for degradation of carbamazepine. Applied Catalysis B: Environmental, 319, 121932. https://doi.org/10.1016/j.apcatb.2022.121932

Li, N., He, M., Lu, X., Yan, B., Duan, X., Chen, G., Wang, S., & Hou, L. (2022). Municipal solid waste derived biochars for wastewater treatment: Production, properties and applications. Resources, Conservation and Recycling, 177, 106003. https://doi.org/10.1016/j.resconrec.2021.106003

Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., & Liu, Q. (2020). Optimized preparation of activated carbon from coconut shell and municipal sludge. Materials Chemistry and Physics, 241, 122327. https://doi.org/10.1016/j.matchemphys.2019.122327

Liu, M., Guan, L., Wen, Y., Su, L., Hu, Z., Peng, Z., Li, S., Tang, Q., Zhou, Z., & Zhou, N. (2023). Rice husk biochar mediated red phosphorus for photocatalysis and photothermal removal of E. coli. Food Chemistry, 410, 135455. https://doi.org/10.1016/j.foodchem.2023.135455

Long, L., Xue, Y., Zeng, Y., Yang, K., & Lin, C. (2017). Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. Journal of Cleaner Production, 166, 1244–1252. https://doi.org/10.1016/j.jclepro.2017.08.122

Lv, S., Li, C., Mi, J., & Meng, H. (2020). A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Applied Surface Science, 510, 145425. https://doi.org/10.1016/j.apsusc.2020.145425

Mathew, G. M., Mathew, D. C., Sukumaran, R. K., Sindhu, R., Huang, C. C., Binod, P., Sirohi, R., Kim, S. H., & Pandey, A. (2020). Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 267, 115656. https://doi.org/10.1016/j.envpol.2020.115656

Mistar, E. M., Alfatah, T., & Supardan, M. D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology, 9(3), 6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041

Nilamsari, Sofyana, Lubis, M. R., Prilyanti, D., & Maimun, T. (2022). Combination of adsorption process using bioadsorbent from coffee ground and ultrafiltration membrane in removing iron and lead content from water. Materials Today: Proceedings, 63, S115–S121. https://doi.org/10.1016/j.matpr.2022.02.051

Pourmortazavi, S. M., Sahebi, H., Zandavar, H., & Mirsadeghi, S. (2019). Fabrication of Fe3O4 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment. Composites Part B: Engineering, 175, 107130. https://doi.org/10.1016/j.compositesb.2019.107130

Prajapati, A. K., Das, S., & Mondal, M. K. (2020). Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves. Journal of Molecular Liquids, 307, 112956. https://doi.org/10.1016/j.molliq.2020.112956

Qu, J., Lv, S., Peng, X., Tian, S., Wang, J., & Gao, F. (2016). Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. Journal of Alloys and Compounds, 671, 17–23. https://doi.org/10.1016/j.jallcom.2016.02.064

Rahmi, R., Lelifajri, L., Fathurrahmi, F., Fathana, H., & Iqhrammullah, M. (2023). Preparation and characterization of PEGDE-EDTA-modified magnetic chitosan microsphere as an eco-friendly adsorbent for methylene blue removal. South African Journal of Chemical Engineering, 43, 296–302. https://doi.org/10.1016/j.sajce.2022.11.009

Rutten, S. B., Levering, V. L., Hernández Leal, L., de Grooth, J., & Roesink, H. D. W. (2023). Retention of micropollutants by polyelectrolyte multilayer based hollow fiber nanofiltration membranes under fouled conditions. Journal of Water Process Engineering, 53, 103760. https://doi.org/10.1016/j.jwpe.2023.103760

Statista. (2023). Leading countries based on the production of milled rice in 2021/2022. Acesso em: 26 jun. 2023. Disponível em: https://www.statista.com/statistics/255945/top-countries-of-destination-for-us-rice-exports-2011/.

Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., & Yan, J. (2019). Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environmental Science and Pollution Research, 26(9), 8902–8913. https://doi.org/10.1007/s11356-019-04321-z

Tang, S. H., & Zaini, M. A. A. (2020). Development of activated carbon pellets using a facile low-cost binder for effective malachite green dye removal. Journal of Cleaner Production, 253, 119970. https://doi.org/10.1016/j.jclepro.2020.119970

Tang, X., Ran, G., Li, J., Zhang, Z., & Xiang, C. (2021). Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. Journal of Hazardous Materials, 402, 123579. https://doi.org/10.1016/j.jhazmat.2020.123579

Tu, B., Wen, R., Wang, K., Cheng, Y., Deng, Y., Cao, W., Zhang, K., & Tao, H. (2020). Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. Journal of Colloid and Interface Science, 560, 649–658. https://doi.org/10.1016/j.jcis.2019.10.103

Wang, Y., Du, T., Jia, H., Qiu, Z., & Song, Y. (2018). Synthesis, characterization and CO2 adsorption of NaA, NaX and NaZSM-5 from rice husk ash. Solid State Sciences, 86, 24–33. https://doi.org/10.1016/j.solidstatesciences.2018.10.003

Xiao, Y., Xue, Y., Gao, F., & Mosa, A. (2017). Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers, 80, 114–121. https://doi.org/10.1016/j.jtice.2017.08.035

Yadav, M., Thakore, S., & Jadeja, R. (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environmental Chemistry and Ecotoxicology, 4, 67–77. https://doi.org/10.1016/j.enceco.2021.12.003

Yang, C., Liu, C., Yan, Y., Lu, L., Ma, R., Xiao, X., Yu, Y., Zhao, Y., Yu, Y., & Li, L. (2023). Efficient removal of Tris(2-chloroethyl) phosphate by biochar derived from shrimp shell: Adsorption performance and mechanism study. Ecotoxicology and Environmental Safety, 254, 114728. https://doi.org/10.1016/j.ecoenv.2023.114728

Zhang, Y., Zheng, R., Zhao, J., Ma, F., Zhang, Y., & Meng, Q. (2014). Characterization of H3PO4-treated rice husk adsorbent and adsorption of copper(II) from aqueous solution. BioMed Research International, 2014, 1–8. https://doi.org/10.1155/2014/496878




Como Citar

Rangel, E. M., Rangel, A. M., & Machado, F. M. (2023). Utilização de resíduos orgânicos para a produção de adsorventes. Dataset Reports, 2(1). https://doi.org/10.58951/dataset.2023.47



Artigo de Revisão