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Abstract  
According to UN-Habitat, more than one billion people live in informal 
settlements worldwide, of which 200 million living in Africa and another 
100 million in Latin America, mainly in countries such as Brazil, Mexico, 
Colombia, Peru, and Argentina. Rio de Janeiro has 1,074 favelas, 
representing 22% of the city's total population, making it the Brazilian 
municipality with the highest percentage of people living in favelas. 
Ensuring human rights through access to basic services for the 
populations living in these settlements, through programs and public 
policies, depends on timely and reliable data. However, despite 
spending decades establishing their national statistical systems, 
usually based on data collection directly from individuals, in most 
countries, the data produced in traditional ways does not portray the 
dynamics of these populations promptly. As an alternative, we 
combined free satellite imagery with machine learning and deep 
learning to identify the area occupied by favelas in the city of Rio de 
Janeiro. We compared the results of eight distinct segmentation models 
using the IoU and F1 as metrics. Among the evaluated methods, two 
stood out for their performance: GradientBoost and XGBoost. 
 
Keywords: Informal settlements. Human rights. SDG 11. Satellite 
imagery. Open access data. Machine learning. Supervised learning. 

Resumo 
Segundo a ONU-Habitat, mais de um bilhão de pessoas vivem em 
assentamentos informais no mundo, das quais 200 milhões estão 
localizadas na África e outras 100 milhões na América Latina, 
principalmente em países como Brasil, México, Colômbia, Peru e 
Argentina. Na cidade do Rio de Janeiro, há 1.074 favelas, onde vivem 
22% da população, tornando-se o município brasileiro com o maior 
percentual de pessoas vivendo em favelas. A garantia dos direitos 
humanos na forma de acesso a serviços essenciais das populações 
vivendo nesses assentamentos, por meio de programas e políticas 
públicas, depende de dados oportunos e confiáveis. No entanto, 
apesar de passarem décadas estabelecendo seus sistemas 
estatísticos nacionais, geralmente baseados em coleta de dados 
diretamente com indivíduos, na maioria dos países, os dados 
produzidos de forma tradicional não retratam de forma oportuna a 
dinâmica dessas populações. Como alternativa, usamos imagens de 
satélite gratuitas em combinação com aprendizado de máquina e 
aprendizado profundo para identificar a expansão ou retração de 
favelas na cidade do Rio de Janeiro. Utilizando as métrica IoU e F1, 
foram comparados oito modelos de classificação, dentre os quais dois 
se destacaram por seu desempenho: GradientBoost e XGBoost. 
 
Palavras-chave: Favelas. Direitos humanos. ODS 11. Imagens de 
satélite. Dados abertos. Aprendizado de máquina. Aprendizado 
supervisionado. 
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1. Introduction  

According to UN-Habitat (2021), more than one billion 

people live in informal settlements worldwide, of which 200 million 

live in Africa and another 100 million in Latin America, mainly in 

Brazil, Mexico, Colombia, Peru, and Argentina. In the city of Rio de 

Janeiro, there are 1.074 slums where 22% of the population live. It 

is the Brazilian municipality with the highest percentage of people 

living in favelas (UN-Habitat, 2023). Given that the vast majority of 

social programs rely on data to create public policy and allocate 

funding for providing essential services, delivering human rights to 

those who most need it is an effective manner. As such, ensuring 

human rights in the form of access to basic services for the 

populations living in these settlements, through programs and 

public policies, depends on timely and reliable data. However, 

despite spending decades establishing their national statistical 

systems, usually based on data collection directly from individuals, 

in most countries, the data produced in traditional ways does not 

portray the dynamics of those populations promptly. 

While censuses are the traditional source of data 

gathering on the way a population lives, having been performed for 

centuries, they are very hard to apply by any government, or under 

any circumstance. In particular, they still face many challenges, the 

main ones being the time and cost to conduct them, the hesitancy 

of respondents to cooperate, and the rapid obsolescence of the 

data. These problems are much greater when surveying informal 

communities, where people tend to have strong concerns about 

privacy and the intrusiveness of public officials, developed as a 

means of self-defense. Added to these issues are the physical 

difficulty of accessing many of these areas (especially those built 

on hillsides) and the presence of organized gangs suspicious of 

intruders. Traditional censuses depend on honest cooperation and 

access to the people, without which the quality of the data will be 

questionable.  

The first modern record of a census can be attributed 

to the province of Quebec, Canada, known at the time as La 

Nouvelle France. While Europeans began registering citizenship in 

Wurtemburg in 1622, the first known census is attributed to the 

Babylonians in roughly 3800 BC (ABS, 2006). Similar to its modern 

counterpart, the Babylonian census was conducted every six to 

seven years, and it served to tally the number of people and 

livestock along with the quantities of butter, honey, milk, wool, and 

vegetables produced, as a measure of wealth at the time (Ibid). In 

1958, at the request of the United Nations Statistical Commission, 

the United Nations released the first set of principles and 

recommendations for population and housing censuses (UN, 

2017). The document describes censuses as vital sources of data 

for policymaking and planning, including boundary delimitation for 

administrative and research purposes, as well as having countless 

uses by businesses and labor organizations. In particular, the data 

are used for the development of benchmark housing statistics, 

assessment of housing quality, and formulation of housing policies 

and programs. 

While traditional censuses can be extremely 

informative and are still the main source of official data, they have 

shortcomings, such as the dependence on the availability of 

resources. In addition, given that the census is conducted usually 

every 10 years, the data gathered by it does become obsolete the 

farther it is from the reference date. This issue is particularly 

heightened for policies that deal with highly volatile and fast-shifting 

situations and rely on the most up-to-date information to allocate 

funding for services. To circumvent the issue of cooperation and 

obsolescence, and access and try to bridge the large data gap, 

many countries have resorted to other types of gathering and 

analyzing data on various topics, including informal settlements. 

According to the Big Data Project Inventory, compiled 

by the United Nations Global Working Group on Big Data, “34 

[National Statistical Systems (NSS)] from around the world have 

registered 109 separate big data projects” (MacFeely, 2019). 

According to the data published by the group in 2018, six national 

statistics offices (NSOs) and other national agencies had reported 

using satellite imagery nationally, while seven had reported doing 

so internationally. Furthermore, a total of 14 projects had 

“Population/migration” as their focus, both nationally and 

internationally, while another 15 of the projects registered were 

“Geographical/spatial” in nature, again both nationally and 

internationally. These projects have very different goals and 

methods, and some use satellite imagery while others rely on 

mobile phone data or web scraping. Thus, it is clear that many 

countries have been using big data to understand how their 

population relates to land use. 

In Latin America and the Caribbean, the use of big data 

is also a reality. According to the International Consultation on the 

Use of Big Data for Statistics in Latin America and the Caribbean, 

conducted annually by the United Nations Regional Hub for Big 

Data in Brazil, 14 countries in Latin America and the Caribbean 

reported using big data to produce either experimental or official 

statistics in the past two years (Hub, 2024; Silva et al., 2023). While 

each of these countries uses different types of big data for different 

purposes, a major use of all the respondents of the consultation is 

satellite imagery, with a total of seven instances reported of use for 

official statistics and eight for experimental statistics. The use of big 

data, and specifically satellite imagery, to produce statistics, both 

official and experimental, is still a novel development; Here we 

contribute by showcasing the use of satellite imagery in 

combination with machine learning to identify slums. 

 

2. Related Work 

As technologies advance, new methods become 

available and new ways to conduct analyses become possible. 

With the advancement of very high resolution (VHR) satellite 

imagery and computational efficiency, Graesser et al. (2012) were 

able to rethink existing theories of how to classify settlements to 

the still very convoluted territory of urban landscapes. According to 

them, “There are many existing methods to map urban structures 

and/or objects, but they all require information extracted from an 

image to work efficiently.” For them, image feature extraction is an 

essential step in the classification of settlements. Nonetheless, the 

urban landscape is extremely complex and requires a feature, or 

set of features, equally complex to even attempt to understand and 

process it, let alone classify it. Finally, with the advance of 

computational technology and processing, the authors were able 

to attempt a “thorough evaluation of them in a systematic manner 

for urban classification.” 

Subsequently, Duque et al. (2017) explored the 

potential of machine learning to identify informal settlements with 

the use of VHR imagery. While previous studies have 

demonstrated that the physical characteristics of informal 

settlements are distinguishable from those of regular settlements, 

classification still requires human interaction. To overcome the 

need for humans and to classify larger areas, the authors switched 

from object-based image analysis (OBIA), previously the most 

commonly used method, although not the only one, to a machine 

learning (ML) approach. This approach is unsupervised, which 

means that after the initial supervised training, it can conduct the 

classification largely by itself, which enables the coverage of larger 

areas. 

Another way of overcoming the limitations of OBIA, as 

shown by Prabhu and Raja (2018), is to use it in combination with 



Cunha et al. Dataset Reports 3:1 (2024) 

 

109 
 

object-oriented classification (OOBIA), which performs much better 

in “selecting the parameters such as scaling and merging for 

segmentation of the images.” However, this method also has some 

limitations, which the authors overcame with a gray-level co-

occurrence matrix (GLCM)-based feature extraction technique, 

which can better process texture and better identify rooflines, 

building outlines, and urban structures. However, while texture can 

help differentiate between regular and informal settlements, the 

approach ultimately fails regarding scale. This leads to the use of 

the space-frequency analytical discrete-wavelet transform (DWT) 

tool, which “can effectively characterize the images at different 

scales.” Lastly, the final step of the detection approach is the 

application of a discrete wavelet frame transform (DWFT), which is 

responsible for overcoming the loss of information related to the 

down-sampling of frequency elements that occurs during DWT.  

Another limitation of the use of satellite images to 

identify and classify settlements is spatial heterogeneity. According 

to Wang et al. (2019), “the urban landscape as a complex 

geographic system is composed of hierarchical patterns and 

discrete objects in a spatial and temporal continuum with different 

scales and anisotropy.” However, while the use of VHR imagery 

has been the best to support comprehensive mapping and 

monitoring of the spatial extent and physical characteristics of 

geographic locations and settlements, it still has limited processing 

capabilities with regard to characteristics of scale and anisotropy 

(Prabhu & Alagu Raja, 2018; Wang et al., 2019). To address this 

issue, Wang et al. (2019) attempted to fill this gap by “analyzing the 

impact of scales and anisotropy detected in the scale space and 

frequency domain for the calculation of texture indices that 

ultimately govern the detection of slums.” 

Still on the subject of heterogeneity and morphology, 

in the case of processing extremely large and/or variable areas, an 

important obstacle is the highly variable morphology of poverty 

(Stark et al., 2020). According to those authors, “Mapping these 

settlements is not a trivial task” and there are certain challenges of 

variability that need to be addressed. The first challenge is that of 

interurban variability, “where morphological slum features can 

change depending on their particular geographical location.” In 

reality, there is no international consensus on the definition of 

informal settlements, let alone on their morphological features and 

characteristics. According to the authors, the “morphologic 

appearances of poverty can be different in every city, ranging from 

very dense low-rise shacks in Mumbai to three-story buildings in 

Medellin.” The second challenge, or the second aspect of the 

variability challenge, is that of intraurban variability, where there 

are large differences between informal settlements even within the 

same city. “Although the slum areas in Lagos are located within the 

same city, their morphological appearance is inherently different.” 

The most recent technological advancement is that of 

deep learning. While both machine learning and deep learning are 

subsets of the field of artificial intelligence (AI), machine learning 

still needs large amounts of human interaction, since it often 

requires the manual identification of features and classifiers to 

properly adjust the algorithm, whereas deep learning can “learn 

from its own errors” (Google Cloud). According to Persello and 

Kuffer (2020), “The recent introduction of deep learning 

techniques, such as CNNs and fully convolutional networks 

(FCNs), has shown great potential for automatically learning the 

spatial, textural and morphological characteristics of deprived 

areas and to produce accurate classification maps within an end-

to-end learning framework.” This approach not only “overcomes 

the limitations of previous deprivation indices, which relied on 

weighted indicators that are sensitive to the choice of individual 

weights,” it is largely an unmanned, automated approach. Because 

of the ability to learn from its own mistakes, the use of deep learning 

enables the coverage of large amounts of land. 

There have also been many experimental studies 

testing previous ideas. Expanding on the idea of using satellite 

imagery as an alternative data source for monitoring urban areas, 

Assarkhaniki et al. (2021) used it for the remote sensing of informal 

settlements in Jakarta, the capital of Indonesia. The authors used 

open-source data to paint a medium-quality picture of the 

settlements in the area. Next, when it came to the method of 

classification between formal and informal settlements, they relied 

on pixel-based classification (PBC), with the use of machine 

learning techniques, to run a combination of classifiers, such as 

KNN, neural networks, and random forests. Finally, the authors 

divided training by first mainly using already recognized informal 

settlements, as described by the World Bank in 2015, and second 

overlaying OpenStreetMap (OSM) data for roads or built-up areas. 

While the results of the first step left little to be desired, it used data 

that at the time were already six years old, so the addition of the 

OSM data significantly enhanced the final results, increasing the 

precision range from 0.58-0.93 to 0.79-0.97, and the accuracy 

range from 0.88-0.97 to 0.93-0.99. 

Another study conducted not long thereafter was that 

of Alrasheedi et al. (2023) in Riyadh City, Saudi Arabia. Unlike the 

previous study, the authors used “WorldView-3 panchromatic and 

multispectral images with spatial resolutions of 0.31m and 1.24 m, 

respectively” for this study, which were VHR images obtained for 

King Abdulaziz City for Science and Technology (KACST), a 

government organization located in Riyadh. Next, they used the 

local community to create a list of the best possible indicators by 

application of a survey. They then ran this list of possible criteria 

through various analytical hierarchy processes to select the priority 

criteria of each possible indicator to select the ones that best 

described “‘informal settlements’ or ‘old residential and historical 

neighborhoods’”. Lastly, the estimation of scale parameter (ESP) 

was used to transform “multi-resolution image segmentation into 

informal settlements, formal settlements, road networks, shadows, 

vacant areas, and vegetation,” and then performed object-based 

image analysis. While this approach was not very successful for all 

classifications (e.g., the vegetation accuracy decreased from 0.97 

to 0.95), the accuracy of formal and informal settlements and 

roads, went from 0.59 to 0.98, 0.53. to 0.93, and 0.67 to 0.83 

respectively, a resounding success.  

A research by Oliveira et al. (2023) also utilized the K-

means classifier in São Paulo, Brazil. The authors used multiple 

models to uncover the most significant features of interest, to 

determine which public policies are better suited to promote the 

envisioned change in each location. Much like us, they began by 

identifying the relevant features using GIS software. However, 

unlike our study, for the second model they used remote sensing 

data to “extract spatial, spectral and textural features from satellite 

imagery.” Lastly, to validate their results they used the information 

provided by the Brazilian Institute of Geography and Statistics 

(IBGE) on informal settlements. Concerning the selection of 

classifiers, the authors developed a model that could handle 

“continuous numerical data such as the spatial features here used,” 

as well as “[perform] well for high volume datasets with small 

processing time for regular machine capacities.” Hence, they 

chose the unsupervised classifier Kmeans. The authors ended up 

with four distinct cluster types “with different deprivation aspects, 

such as higher and lower accessibility to services and 

infrastructure, sparser and denser occupation; regular and 

complex morphology; flat and steep terrain.” 

The final study covered in this section is by Cinnamon 

and Noth (2023), which is by far the largest and most complex, 

spanning 20 years. The research focused on Cape Town, South 

Africa, and the authors monitored the spatiotemporal development 

of the informal settlements in the city from 2000 to 2020, identifying 

their locations at the beginning of the study, and tracking “their 
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growth and decline over the 20-year period”, until 2020. As the 

second most populous city in South Africa, and with a history of 

apartheid until 1994, Cape Town served as the perfect setting for 

a long-term study of informal settlements and how they grow and 

change over time. The authors relied on open-source data 

gathered from local and international web-based data repositories. 

Additionally, the Cape Town city government itself has an open 

portal where it provides access to various “key datasets”, which 

“[contain] a variety of spatial datasets, however, no informal 

settlement location datasets are available.” Several of these 

datasets from the city’s open portal were used to identify the 

locations of informal settlements, including “a dataset on city wards 

and building parcels,” which included “building footprints and 

information for all formal land tenure throughout the city.”  

For their study, two types of image data were used, 

namely “high resolution (8 cm) aerial photographs from 2020”, and 

“multi-temporal medium resolution (30 m) satellite imagery from the 

Landsat 5 and 8 satellites.” To identify informal settlements, they 

opted for a “combined visual image interpretation and ancillary data 

overlay approach.” Using 2020 high-resolution photos of the city, 

the authors conducted an “informal land use detection analysis,” 

visually and manually classifying what they believed to be the 

complex and organic morphology of informal settlements within the 

limits of Cape Town. Next, they overlaid the formal residential 

parcel dataset on the aerial photos to better differentiate the 

irregular from the regular settlements. Last, using the matrix 

dataset from the OpenUp data portal, they populated their 

settlement representation, ending up with a total of 254 informal 

settlement areas of interest throughout the city, which were then 

monitored over the span of 20 years. 

To track the development of these informal 

settlements, an object-based approach was adopted to monitor 

and record the “change in built-up vs. non-built-up land.” Using this 

supervised classification model, the authors produced new layers 

of land classification for every 5-year interval (2000, 2005, 2010, 

2015, and 2020), which were then patched together into one. 

Utilizing the QuantumGis application, they combined two separate 

raster layers into one output layer through the use of the r. cross-

function, which created new raster values “for each unique 

combination of values from the input raster layers.” With the use of 

this function, four unique raster values were “assigned to each type 

of land cover change between the 5-year intervals and between the 

overall 2000 to 2020 study period.” In the end, they were able to 

accomplish a “settlement detection analysis [that] identified that 

informal settlement areas comprised 1720 ha of Cape Town in 

2020, representing 0.7% of the city (246,100 ha).” Furthermore, 

they found that during 2020, 4.2% of all Cape Town residents (over 

190 thousand people) were living in informal settlements.  

These examples illustrate the successful application of 

satellite imagery in analyzing informal settlements. A quick search 

on Google Scholar reveals nearly 86,000 studies on this topic. 

Whether through large-scale projects or smaller studies, we aim to 

further demonstrate the promising potential of this approach. 

 

3. Methodology 

Rio de Janeiro, also known as the ‘Marvelous City’, has 

a coastline that extends 246 km. Besides the many beaches and 

other stunning coastal features, the city boasts one of the largest 

urban forests in the world, along with mountains that reach a peak 

of 1025 meters above sea level. Rio de Janeiro thus has a skyline 

filled with the highs of mountains such as the famous Sugar Loaf, 

and Corcovado (site of the Christ the Redeemer statue), alongside 

the beautiful low of its beaches, lagoons, and bays, such as 

Copacabana Beach, Guanabara Bay, and Rodrigo de Freitas 

Lagoon (Guitarrara, n.d.). Located in the Tropic of Capricorn, it has 

a pleasant average temperature of about 24 degrees Celsius. Rio 

de Janeiro is hence not only a marvelous place to visit, but it is also 

a perfect setting to study the different ways people form 

communities given its diverse geography and socioeconomic 

inequalities. Therefore, we decided to use the beautiful city of Rio 

de Janeiro as the setting for this study.  

The study began by downloading a satellite image of 

Rio de Janeiro. Since it can be hard for most classifiers to process 

and differentiate data from images with a resolution lower than 10 

m (Gram-Hansen et al., 2019), we used a high-quality open-source 

50-centimeter resolution satellite image from Google covering the 

entire city of Rio de Janeiro. However, the processing power 

required to process the downloaded dataset was out of our 

research group’s available computational power. As such, we 

preprocessed the dataset merging the 50-centimeter pixels 

producing a 1-meter spatial resolution image, with only RGB 

frequencies to detect the red, green, and blue layers.  

Next, we decided on the sample size for our testing 

data, as well as how we would classify our training data. 

Regardless of whether the code uses machine learning or deep 

learning, all supervised classifiers can only be as good as the data 

used to train them. For the train-test split, we settled on 70% of the 

sample used for training, while the remaining 30% of the sample 

was used to test how well our classifiers had learned from the 

training set, and if they were then able to successfully classify 

areas on their own.  

Building the training sample was somewhat laborious. 

We decided to rely on the enumeration areas used by the IBGE to 

conduct the population census as units. We then selected the units 

that IBGE identified as informal settlements to assemble our 

dataset, and, then randomly selected 30% of the units in our 

dataset for the training sample. However, although these areas had 

been designated by the IBGE as informal settlements, there is 

much more than just structures in those areas, such as greenery, 

and even regular settlements side-by-side with informal ones. We 

then visually identified everything that seemed like an informal 

settlement. 

To visually select our areas of interest within the 

training sample, we used the Quantum GIS application, a free 

open-source geographic information system software (QGIS, 

2024). We uploaded our 1-meter resolution RGB-only image of the 

city of Rio de Janeiro into the software and then overlaid the 

training sample on it. We used a polygon-creating tool to create 

polygons that encompassed everything that looked like informal 

settlements, and nothing more. A not insignificant amount of the 

original selection made by the IBGE was greenery, which was 

skewing the results of our classifiers and needed to be removed. 

We then combined all polygons into a single mask, which we then 

used to train our classifiers.  

In this regard, the only thing missing to classify informal 

settlements with the use of satellite imagery and machine and deep 

learning was the code. The code used in this study was developed 

as an ongoing effort of the research group Big Data and SDG of 

the United Nations Regional Hub for Big Data in Brazil, hosted by 

the National School of Statistical Sciences (RGBDPS, 2024). It is 

a Python code that consumes the same satellite image of the city 

of Rio de Janeiro alongside our training mask and uses it to train 

various models.  

Currently, the code requires pixel coordinates and the 

size of a small test area, which must contain at least a part of one 

of the training units somewhere. Once this was done, the program 

ran all of the classifiers and returned a table of scores, which we 

used to gauge how well each classifier was learning and replicating 
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the patterns for the identification and classification of informal 

settlements.  

This research focuses on a selected area with the 

ultimate goal of classifying every pixel in the city of Rio de Janeiro. 

For this study, the test ran in different regions of the city and will be 

adjusted to best fit all different types of informal settlements in the 

city. To maximize our chances of success, we are currently running 

eight models of classifiers, namely XGBoost, Random Forrest 

Classifier, LightGBM Classifier, Gradient Boost, Kmeans, 

GassianNB, Logistic Regression and MLP Classifier. 

The study has shown some promising results so far. 

Once all pre-processing was done and we were ready to start 

running our Python code, we did so by selecting a small area for 

testing. To adapt the code to the power available in each 

researcher’s machine, the code was adjusted to run test squares, 

the size of which was chosen by the person running the code. As 

such, the only thing to be entered into the code before running it 

was the pixel coordinates for the left-most pixel in our desired area, 

along with the desired size. In this paper, we are showcasing the 

pixel coordinates 15733,13834, with a size of 1000×1000 pixels, or 

1 km2. This referred to the wonderful district of Campo Grande. 

 

4. Results and Discussion 

Before running any classifiers or even doing any pre-

processing of our image, we adjusted the Python code to provide 

a preview of the data for the test square, including the image, the 

mask of informal settlements, and the images overlaid on each 

other. In this respect, once the desired pixel coordinates were 

uploaded, the code returned the selected satellite image, the mask 

created by the visual classification indicating the presence of an 

informal settlement, and the overlapping of both (Fig. 1). 

 

Fig. 1 Satellite image, mask and mask over image 

 

Next, we ran the classifiers. They analyzed the 

different features of the image, and the areas marked as informal 

settlements and tried to replicate the classification. This was by far 

the heaviest and most time-consuming part of the entire code 

exercise. Once the classifiers had all run to completion, the code 

once again returned a visual representation of the classifiers’ 

predictions (Fig. 2). 

 

 

Fig. 2 Prediction of the presence of informal settlements by classifier 

 

Some classifiers performed better at making 

predictions than others. Out of our eight classifiers, Kmeans, 

LogisticRegression, and GaussianNB did very poorly when 

considering the harmonic mean of the precision and recall (F1 

score), while XGBoost and GradientBoost performed the best. 

Table 1 Performance of classifiers by various metrics 

Models Accuracy Precision Recall F1 Score IoU 

XGBoost 89.3% 82.8% 74.6% 78.5% 75.6% 
GradientBoost 90.3% 85.0% 76.2% 80.4% 59.7% 
LGBMClassifier 73.3% 49.4% 87.6% 63.2% 54.9% 
RandomForest 55.6% 36.6% 94.8% 52.8% 54.6% 
Kmeans 53.0% 25.3% 40.9% 31.3% 53.4% 
MLPClassifier 80.9% 72.8% 43.1% 54.1% 50.5% 
GaussianNB 48.7% 30.1% 72.6% 42.6% 49.4% 
LogisticRegression 75.3% 64.4% 12.7% 21.2% 49.4% 

 

To better understand the different scores and where 

the classifiers stood in relation to each other, we separated the 

classifiers into three groups based on their Intersection over Union 

(IoU) performance, namely: 

 

• High performance (70% or more): XGBoost  

• Moderate performance (50% to less than 70%): 

RandomForest, LGBMClassifier, GradientBoost, Kmeans, 

and MLPClassifier 

• Low performance (less than 50%): GaussianNB and 

LogisticRegression 

 

While some classifiers might seem exceptional 

according to one metric or another, it is important to consider all of 

them. An exceptionally high recall, such as the RandomForest and 

the LGMBClassifiers, can mean these models are memorizing the 

original mask rather than learning from it, which would lead to low 

accuracy and precision. This was exactly the case with our 

classifiers. On the other hand, even though GradientBoost had an 

overall accuracy of 90.3%, it still only had 59.73% in IoU, also 

known as the Jaccard Index, which is calculated by dividing the 

overlapping area by the union area. In fact, even though the 
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GradientBoost model had better accuracy, recall, and precision 

than XGBoost, their IoU scores were inverted, with the XGBoost 

ahead by over 15 percentage points. Although there were two close 

contenders for best classifier among most of the different metrics, 

with the GradientBoost and XGBoost being very close together, 

considering the IoU score, a far better metric to judge segmentation 

tasks, the XGBoost had a significant advantage, making it our best 

classifier currently. 

These numbers are, however, only true for this unique 

1 km square. The results do not apply to other areas. Since the 

different areas of the city have different geological features and 

informal settlements largely follow and adapt to these, they can 

look very different from one another. We are currently working on 

generalizing from a single square to the entire city. Rio de Janeiro 

is a large and hugely varied city, not only when it comes to its 

geography, but also its settlements and buildings. Informal 

settlements come in many different shapes and sizes. While some 

are small and go up hillsides, others are in large and flat areas. 

Therefore, we are in the process of assessing which of the models 

are best at recognizing the many different types of slums in the 

entire city, and how to best take them into account for a final study.  

 

5. Conclusion 

The census is the single most important tool the 

government has when it comes to urban planning. In particular, it 

is the best and most accurate way of properly establishing any 

public policies, including education, health, social security, 

pensions, sanitation, housing, and urban infrastructure, along with 

essential services to homes and businesses, to name a few. 

However, hidden societies are dependent on staying under the 

radar, particularly of the government. This is facilitated by the fact 

there are many areas where government agents rarely go. With the 

safety of these populations and surveyors in mind, we are trying to 

complement the data from the census takers by using satellite 

imaging and machine learning.  

Our machine learning classifiers have proven efficient 

in recognizing and classifying slums using remote sensing data. 

While not all classifiers reached the original proposal of the study, 

two of our models produced excellent results while others have 

shown promise. While the XGBoost model is the best classifier in 

this study, given the significant distance from its closest contender 

by the IoU score, the GradientBoost model had the best overall 

accuracy, precision, recall, and F1 score, albeit not by much. As 

such, it is the combination of these many factors that put XGBoost 

ahead of GradientBoost. 

While the results have been extremely promising, as 

always there are limitations and weaknesses. For now, we are still 

working on applying the classifiers to a larger area, trying to 

overcome the heterogeneity among different informal settlements. 

Even though only a sample of areas is needed to train the 

classifiers, a sample of a large area is still large, which must be 

visually identified, potentially a very time-consuming process. 

Similarly, while this study is a collaborative effort, in the case of a 

large-scale or country-wide application, this will be a significant 

effort to consider, since any model can only be as good as the data 

used to train it.  

On the road to the full study, we have already begun 

our efforts to generalize our findings to the entire city. We have 

extended our test area to 30% of recognized slums of the city of 

Rio de Janeiro, and we have begun our visual recognition efforts. 

Since the area is large and maintaining quality is imperative, we 

are working hard to go through all the test data manually and 

classify the informal settlements. Additionally, we are in the midst 

of trying to extend our classifier selection with more complex 

algorithms, such as Convolutional Neural Networks (CNN), which 

would significantly improve our generalization ability. Furthermore, 

additional preprocessing of remote sensing data could also be 

beneficial to further improve the performance of our existing 

classifiers. As such, we look forward to bringing the full version of 

this study to readers once it is finalized. 
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